- 5 ошибок при подключении лампы ДНаТ.
- Зажигающие устройства, ИЗУ
- Принцип работы ИЗУ
- Схемы включения ИЗУ
- Мы поможем подобрать светильники на ваш объект
- Электронный балласт для газоразрядных ламп ДРЛ, ДНАТ
- ИЗУ: схема подключения,виды, какое выбрать
- Устройство ИЗУ
- Принцип работы
- Виды ИЗУ
- Схема подключения ИЗУ: конкретные схемы
- Подключение двухконтактного ИЗУ
- Подключение трехконтактного ИЗУ
- Распространенные ошибки при подключении
- Какое ИЗУ выбрать
5 ошибок при подключении лампы ДНаТ.
Газоразрядная дуговая натриевая лампа ДНаТ используется для освещения больших площадей, улиц городов, теплиц.
Не стоит путать натриевые лампы низкого и высокого давления. У них разная конструкция и принцип действия.
В спектре свечения у обоих преобладает оранжевый свет. У изделий низкого давления, излучение практически монохромное, они светят ярким золотистым светом.
Если их применять для освещения в комнатах, то цвета будут практически не различимы.
В лампах высокого давления спектр более разнообразный.
В тех моделях, которые используются в теплицах для выращивания растений, в световой спектр специально добавлено немного синего света.
В комплект для подключения лампы высокого давления входит несколько компонентов, без которых вы ее попросту не запустите. То есть, элементарно подав на нее 220 вольт, она у вас не загорится.
Для этого нужно специальное устройство – дроссель или балласт, который в свою очередь подключается по определенной схеме.
Схема эта зачастую изображена непосредственно на корпусе.
Вот ее более развернутый рисунок.
Через него можно подключать экземпляры разной мощности, от 70 до 400Вт.
ИЗУ создает стартовый импульс для пробоя содержимого горелки в колбе и образования дуги. Напряжение при этом достигает нескольких тысяч вольт!
А сама горелка в процессе работы разогревается до 1300 градусов.
Только после ИЗУ, подключается сама газоразрядная лампа.
Эта же схема подключения может быть изображена на стенках зажигающего устройства.
Кроме того, в комплекте для подключения рекомендуется применять конденсатор. Хотя он присутствует далеко не во всех схемах.
Для чего он необходим? Как известно, цепи с использованием дросселей питания, потребляют как активную, так и реактивную мощность. От второй, никакого полезного эффекта вы не получите.
Лампа от этого ярче светить не станет, а вот потери увеличатся. Именно для того, чтобы убрать эту реактивную составляющую и используют фазокомпенсирующий конденсатор.
Наглядное сравнение тока потребления светильника ДНаТ с конденсатором и без него:
Как видите, более чем двойная разница. В первом случае показан компенсированный ток (активный), а во втором случае полный (без конденсатора в цепи).
Некоторые думают, что тем самым они еще и уменьшают потребление эл.энергии, однако это не совсем так.
Счетчик у вас не рассчитан на подсчет реактивной или полной энергии, и фактическая экономия по затратам может составить максимум 3-4%.
Зато вы уберете лишние потери на нагрев проводов и железа.
Вот собранный своими руками компактный щиток, согласно схемы подключения.
Можно конечно все это собрать и в габаритном корпусе светильника, если позволяют размеры.
Очень важно, перед тем как самому собирать такую схему и использовать какие-либо компоненты, обычным мультиметром в режиме замера максимального сопротивления, проверить изоляцию дросселя и конденсатора.
Нет ли пробоя на корпус.
Для подачи и отключения питания 220В используйте двухполюсный вводной автомат.
Для одного светильника мощность до 400Вт вполне сгодится автомат номиналом 5-6А. Кроме коммутационных операций вкл-выкл, он еще будет играть роль защитного аппарата.
Монтируется автоматический выключатель в самом начале схемы. Не забудьте также заземлить корпус всего щитка.
С автомата выходят два нулевых провода. Один из них согласно схемы, пускаете напрямую к лампе, а второй подключаете к соответствующему зажиму, подписанному «N» на пусковом устройстве.
Иначе можно случайно сжечь изделие, если при работе нулевой провод после балластного дросселя, случайно коротнет.
А провод с выходящего контакта подключаете на клемму “В” (Balast) пускорегулирующего изделия.
Заметьте, есть ИЗУ двухконтактные и трехконтактные. Первые подключаются параллельно самой лампе.
Зажигающие устройства, ИЗУ
Изготовитель предопределяет схему включения ИЗУ и максимальную длину кабеля. Конкретная модель не может включаться по иной схеме.
Для зажигания (запуска) металлогалогенных газоразрядных ламп и натриевых газоразрядных ламп высокого давления, на них подается кратковременное высокочастотное напряжение 2—5 кВ. Это напряжение формируют особые импульсные зажигающие устройства (ИЗУ).
Принцип работы ИЗУ
ИЗУ представляют собой полупроводниковые генераторы импульсов высокой частоты. Установленный в ИЗУ конденсатор через диод и резистор заряжается до требуемого напряжения. При замыкании контакта возникает разряд конденсатора высокой частоты через первичную обмотку трансформатора. На вторичную обмотку подается напряжение, величина которого должны быть равна величине напряжения на первичной обмотке, умноженной на трансформационный коэффициент (отношение количества витков вторичной обмотки к количеству витков первичной обмотки). Если трансформационный коэффициент равен, к примеру, 10 (в первичной обмотке 1 виток, во вторичной обмотке 10 витков), то импульсы на вторичной обмотке могут достигать 3 кВ.
В качестве контакта чаще всего применяются тиристоры, на электроды которых поступает напряжение с частотой 50 Гц. Элементов ИЗУ и их характеристики подобраны таким образом, чтобы импульсы высокой частоты формировались лишь в конкретные фазы на¬пряжения в сети. Общее количество формируемых импульсов высокой частоты в течение одного полупериода напряжения сети составляет от одного до нескольких десятков; продолжительность формируемых импульсов — от нескольких сотых долей микросекунды до нескольких микросекунд.
Генерируемые высокочастотные импульсы с выхода зажигающего устройства поступают на лампу.
Схемы включения ИЗУ
Рассмотрим схему параллельного запуска ИЗУ. В такой схеме ламповый ток не проходит непосредственно через ИЗУ, что практически исключает любые потери мощности. Схема зажигающего устройства для подобного включения достаточно проста, сами устройства недороги, просты в эксплуатации и достаточно надежны. Однако формируемые зажигающим устройством импульсы высокой частоты в такой схеме оказывают влияние, помимо лампы, также на дроссель, что обуславливает обязательное применение дросселей с повышенной изоляцией, устойчивой к напряжению 2–5 кВ.
Поскольку стандартные дроссели для металлогалогенных и натриевых ламп не поддерживают такую величину напряжения, то параллельная схема включения ИЗУ используется лишь с лампами, зажигающее напряжение которых меньше 2 кВ. В первую очередь к таким лампам относятся металлогалогенные лампы высокой мощности (от 2000 до 3500 Вт).
Мы поможем подобрать светильники на ваш объект
Импульсные зажигающие устройства могут также включаться по схеме, которая не предусматривает наличия в них импульсного трансформатора, так как в такой схеме его функции выполняет балластный дроссель, оснащенный отводом. Несомненно, что дроссель в такой схеме включения должен быть предназначен непосредственно для работы в ней и оснащаться повышенной изоляционной системой. Компания TridonicAtco выпускает подобные дроссели для металлогалогенных ламп, мощность которых составляет 35–2000 Вт и для натриевых ламп высокого давления, мощность которых составляет 35–1000 Вт, а также сами зажигающие устройства, предназначенные для работы лишь с этими дросселями.
Схема последовательного включения импульсных зажигающих устройств наиболее распространена и используется чаще всего. В таких ИЗУ вторичная обмотка трансформатора активизируется между дросселем и самой лампой, и ламповый ток протекает уже по ней. По этой причине в ИЗУ с такой схемой подключения обязательно происходит определенная потеря мощности (до 1 процента от общей мощности лам¬пы), и элементы ИЗУ сильно нагреваются. По этой причине размеры и вес устройства с последовательной схемой включения намного выше, чем у устройств с параллельной схемой включения, или у устройств на основе дросселей. Однако в параллельной схеме можно смело применять простые дроссели без улучшения изо¬ляции, поскольку повышенное напряжение поступает лишь на лампу. Объемы производства ИЗУ с последовательной схемой включения огромны и составляют больше 95 процентов от всех изготавливаемых в мире импульсных зажигающих устройств.
Качество работы зажигающих устройств зависит от следующих характеристик:
Электронный балласт для газоразрядных ламп ДРЛ, ДНАТ
Назначение устройства
Устройство предназначено для использования совместно с газоразрядными лампами, взамен балластных дросселей.
Традиционное использование дросселей, в качестве ограничителей тока, приводит к возникновению значительной величины реактивной и полной потребляемой от сети мощности. Так, при использовании дросселей для ламп ДРЛ-125 коэффициент реактивной мощности =0,55. Электронные балласты повышают коэффициент мощности более чем до 0,92 с учётом потерь на переходах полупроводниковых приборов и токоограничительных элементах схемы. Один из известных недостатков газоразрядных ламп высокого давления – это невозможность быстрого повторного включения. Часто, при кратковременных “скачках” напряжения сети лампы гаснут и приходится ожидать несколько минут для повторного включения ламп. Это происходит при работе электроинструмента, сварочного оборудования в одной сети с лампами. Использование электронного балласта устраняет этот недостаток, лампы продолжают работать при “просадках” напряжения. Если же лампа погасла, то повторное включение происходит несколько раньше, чем при работе с дросселем.
Лампы ДРЛ, ДНАТ, в отличие от газоразрядных ламп комнатного освещения, не теряют интенсивности свечения при низких температурах воздуха. Лично я использую указанные выше лампы для освещения гаража, они являются основным источником света зимой, когда лампы ЛБ, ЛД едва светятся.
Для меня использование электронного балласта стало особенно актуальным при непрерывном росте стоимости электроэнергии.
Принципиальная схема и детали
Поиск готовых схемных решений электронных балластов привёл меня в уныние и негодование. Несмотря на активное использование энергосберегающих ламп, схем простых балластов для ламп ДРЛ я не смог найти.
Однако, удалось найти статью, рекламирующую полупроводниковые приборы фирмы International Rectifier с названием: «МОП-транзисторы улучшают КПД и удлиняют срок службы электронных балластов осветительных приборов»
Статья описывает достоинства использования МОП – транзисторов в полумостовых преобразователях. Именно по такой схеме построен балласт, как и большинство используемых сейчас балластов в энергосберегающих лампах. Основной сложностью создания балласта является отсутствие информации о типах и размерах магнитопроводов для трансформатора и балластного дросселя. Указанный в статье тип сердечника не дает возможности определить магнитную проницаемость, форму и размеры, необходимую информацию найти не удалось. Моя статья поможет вам определиться в выборе материалов и использовать доступные детали. В балласте изменена схема запуска, так как в наличии не оказалось двуханодных динисторов на момент испытаний. Уменьшено количество элементов, отсутствует управление включением ламп при наступлении сумерек. Таким образом, схема максимально упрощена. Дальнейшее описание будет предполагать нумерацию элементов указанную на схеме:
Известно, что полумостовые преобразователи с индуктивной обратной связью работают в режиме насыщения трансформатора Т1, таким образом, частота переключения транзисторов будет зависима от совокупности сразу нескольких факторов: тока протекающего в цепи лампы, тока в цепях L1, R6, VD2, L2, R7, VD3. Ток в цепи лампы непосредственно зависит и от частоты работы преобразователи и от индуктивности обмотки L4 трансформатора Т2. Таким образом, при создании первого экземпляра устройства, однозначно определить необходимое количество витков трансформаторов сложно. Первые экземпляры балластов намерено были изготовлены с магнитопроводом трансформатора Т2 избыточного сечения, чтоб исключить его насыщение. После успешного запуска и испытаний были уточнены размеры трансформаторов, количество витков, величина немагнитного зазора.
Таким образом, для использования с лампами ДРЛ 125, в качестве Т2, подойдёт ферритовый броневой магнитопровод из двух чашек M2000НМ, диаметром 30мм. В качестве трансформатора Т1 применено кольцо М2000НМ 17х10х5. Обмотка L3 содержит – 2,5 витка монтажного провода поверх обмоток L1, L2 в которых по 20 витков провода ПЭВ 0,35. Обмотки L1, L2 наматываются одновременно в два провода. При этом обмотка L4 содержит 52 витка, L5 – 3 витка провода ПЭВ 0,62 Немагнитный зазор трансформатора Т2 около 0,6мм.
При использовании указанных материалов, частота работы преобразователя около 38кГц в начале “разгона” лампы, и около 67 кГц после выхода лампы в рабочий режим.
Так как балласты изготавливались из материалов, которые были в наличии, то следующий экземпляр отличался размером магнитопровода Т1. На этот раз использовалось кольцо вовсе неизвестной магнитной проницаемости с размерами 14х8х4,5. В качестве Т2, тот же магнитопровод из двух чашек 30мм.
Изменяя количество витков обмоток L1, L2 можно в значительной степени изменять частоту работы преобразователя, но при этом придется корректировать количество витков обмотки L4 трансформатора T2. Так второй экземпляр устройства настроен на частоту преобразования 50-75 кГц, при этом L1, L2 содержат по 10 витков, L3 – 1,5, а L4 всего 39 витков, того же провода, что и в первом балласте. Частоту преобразователя так же можно изменить используя стабилитроны VD2, VD3 на различные напряжения и резисторы R6, R7 разного сопротивления. Речь идет об изменении тока в указанных цепях, просто различными способами, наиболее удобными для конкретного случая. Не стоит забывать, что рабочий диапазон частот для материалов М2000НМ до 100кГц.
В качестве VD2, VD3 использованы импортные стабилитроны в стеклянном корпусе 12В, мощностью 1,2Вт, парами соединённые катодами. В качестве теплоотводов использованы радиаторы выходных транзисторов кадровой развёртки телевизоров 3УСЦТ.
Обмотки L1, L2 на рисунке изображены намотанными отдельно друг от друга лишь для более понятного считывания правила подключения обмоток. Под указанные элементы рассчитаны печатные платы на рисунке. Не крепить трансформатор Т2 к плате металлическими деталями через центральное отверстие. Мы делаем балласт, а не индукционную печь!
Настройка устройства
Настройка устройства заключается в подборе количества витков обмотки L4, для получения необходимого значения напряжения на лампе, после её прогрева. Так, для ламп ДРЛ 125, рабочим напряжением считается величина действующего напряжения 125В.
Большинство простых мультиметров не даст возможности измерить напряжение на лампе на частотах работы преобразователя. Для настройки лучше воспользоваться осциллографом. Современные осциллографы способны измерять действующее значение напряжения, в том числе с учётом формы сигнала. Если ваш осциллограф не имеет этой функции достаточно определить амплитудное значение напряжения. Так как напряжение на лампе близко по форме к синусоидальному, вычислить действующее (оно же эффективное или среднеквадратичное) значение напряжение можно умножив амплитудное значение на 0,7.
Убедитесь в работоспособности цепей защиты (VD5, R8, C3, VD6, R9, VT4), подачей переменного напряжения от внешнего источника. При достижении напряжения немногим более 32В балласт должен отключиться. В случае неисправности цепей защиты, при включении устройства без лампы или при выходе её из строя, возможен выход из строя конденсатора С4, так как на нем возникает значительное напряжение. Так конденсатор на 1кВ выходит из строя в течение пары секунд, это результат работы последовательно колебательного контура L4C4. Такая схемотехника позволяет использовать балласт для ламп ДНАТ без специального пускового устройства.
ИЗУ: схема подключения,виды, какое выбрать
Импульсное зажигающее устройство – импульсный прибор для розжига газоразрядных ламп, в том числе ДНаТ (натривых высокого давления), ДРИ (ртутных газоразрядных), МГЛ (металлогалогенных) и др.
Устройство ИЗУ
Газоразрядные лампы (ГРЛ) обладают многими достоинствами, но для их подключения требуются дополнительные электрические приборы. К ним относятся импульсные зажигающие устройства (ИЗУ), пускорегулирующая аппаратура (балласт/дроссель).
Свечение любой ГРЛ начинается с первоначального импульса высокого напряжения, который вызывает первичное возбуждение молекул газа, который заполняет колбу лампы. Далее молекулы возбуждаются сильнее под действием проходящего тока, электроны поглощают энергию и переходят на более высокие орбитали и оседают обратно на более низкие с выделением фотонов света. Лампочка начинает светить.
Для создания высокочастотного импульса необходим специальный прибор. Им является ИЗУ. Прибор повышает напряжении сети 220 В до величины, при которой образуется электрическая дуга. Повышение происходит благодаря высокому (2-5 кВ) напряжению. Зажигающее устройство выдает высоковольтные импульсы и в колбе возникает дуга. После этого источник света продолжает работать от сети 220 В.
Внешне импульсные защитные аппараты выглядят, как параллелепипеды или цилиндры с контактами. На корпусе нанесены электрические параметрами и схема подключения.
Внутренняя конструкция защитных аппаратов довольно сложна и зависит от их типа.
Принципиальная схема трехконтактного прибора с таймером
Принцип работы
Необходимые элементы подключения газоразрядных лампочек
Импульсное защитное устройство работает, как полупроводниковый генератор импульсов высокой частоты. Внутри прибора есть конденсатор, который через диод и резистор заряжается до нужного напряжения. При прохождении тока контакты (тиристоры) замыкаются, и конденсатор разряжается через первичную обмотку трансформатора. А на вторичной обмотке формируется высокое напряжение, которое подается на источник света.
Все электротехнические элементы прибора подбираются так, чтобы импульсы формировались только в определенные фазы напряжения сети. Количество импульсов, формируемых в нужную фазу, доходит до нескольких десятков. А их продолжительность – от сотых долей микросекунд до нескольких микросекунд.
Таким образом, импульсный защитный прибор необходим для повышения напряжения до такого значения, чтобы образовалась дуга.
Важно контролировать процесс зажигания источника света. Контроль возможен через силу тока или напряжения в источнике света.
При выборе импульсного аппарата рекомендуется обратить внимание на некоторые дополнительные параметры:
Виды ИЗУ
Зажигающие устройства могут быть последовательного типа и параллельного. Приборы параллельного типа оснащены двумя контактами. Напряжение при их работе поступает не только на лампу, но ответвляется на дроссель. В результате возможен пробой: изоляция пускорегулирующей аппаратуры не выдерживает таких напряжений. К тому же при отсутствии в цепи или перегорании лампы двухконтактный прибор сломается. Рекомендуемое расстояние от защитного устройства до пускорегулирующей аппаратуры составляет всего 2 м. Однако, такие аппараты дешевле.
В приборе последовательного типа три контакта. При последовательном подключении при перегорании или отсутствии источника света защитное устройство продолжает работать. Расстояние между дросселем и импульсным прибором не ограничивается. Но к концу срока службы источника света проявляется выпрямительный эффект, который приводит к неверной работе пускорегулирующей аппаратуры. Импульсный защитный аппарат при этом работает постоянно, что приводит к выходу всей системы из строя.
Для индикации возможных проблем в трехконтактные приборы встраивают таймер. Таймер отключает прибор через заданное время в случаях отсутствия/перегорания источника света или безуспешной попытке разжечь лампу.
Также есть разделение по мощностям и типу цоколя Е27 и Е14.
Схема подключения ИЗУ: конкретные схемы
В зависимости от количества контактов импульсные зажигающие устройства подключаются либо последовательно, либо параллельно. Схема подключения обычно указывается на корпусе изделия.
Общие схемы подключения
Подключение двухконтактного ИЗУ
Двухконтактные приборы используются для ламп, напряжение розжига которых меньше 2 кВ. Главным образом, это дуговые металлогалогенные и натриевые источники света малой мощности. Схема подключения: параллельная.
Схема подключения двухконтактного ИЗУ
Ток, идущий на лампу, не проходит через защитное устройство. Однако, высокочастотные импульсы, формирующиеся для розжига, влияют на балласт и могут привести к его пробою. Поэтому при параллельном подключении обязательно применение дросселей с изоляцией, устойчивой к повышенным напряжениям (2-5 кВ).
Подключение трехконтактного ИЗУ
Трехконтактные аппараты постепенно вытесняют двухконтактные. Они подключаются последовательно. Прибор с последовательным подключением надежнее: исключается пробой на балласт. Подключение защитного устройства к источнику света можно разделить на несколько этапов:
Рассмотрим конкретные схемы подключения.
ИЗУ-Т характеризуется небольшими размерами (диаметр 35 мм на 50 мм), стандартным креплением и встроенным таймером (не во всех моделях). Предназначено для совместной работы с магнитным балластом и лампами ДНаТ и ДРИ мощностью до 1000 Вт (220 В) и до 2000 Вт (380 В). Конструкция моделей с таймером позволяет балласту дольше оставаться в исправном состоянии, повторно зажигать источник света при кратковременном отключении электричества, уменьшает вероятность пробоя магнитного балласта.
Схема подключения ИЗУ-Т
ИЗУ-250-1000 Вт используются для розжига ДНаТ, ДРИ и МГЛ. Размер: 60×78 мм. Рекомендуется использовать с электромагнитным балластом. Степень защиты IP20.
Схема подключения ИЗУ-250
Схема подключения ИЗУ-1М
Распространенные ошибки при подключении
Какое ИЗУ выбрать
В таблице представлены типы источников света и подходящие импульсные устройства.