- Делаем высокочувствительный детектор электромагнитного поля
- Загрузки
- Простой детектор-индикатор электромагнитного излучения на 555-м таймере
- Делаем простой детектор СВЧ-поля » Индикатор СВЧ » Наука » Обзоры » Лучшее 2015
- Делаем простой детектор СВЧ-поля
- Категории: Наука, Обзоры
- Категории и теги: Наука, Обзоры » Индикатор, СВЧ, Детектор, Датчик, Электромагнитного, Поля, Диод, Лампочка.
- Реклама
- Комментарии:
- Romuald
- Сергей Ч.
- ВалерийЕвс
- whoim
- НЕОБЫЧНЫЙ ДЕТЕКТОР ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ
- Принципиальная электросхема
- Процесс сборки
- Дополнительные возможности
- Видео работы детектора ВЧ
- Как сделать детектор электромагнитного излучения своими руками
Делаем высокочувствительный детектор электромагнитного поля
Простой в сборке, но высокочувствительный, детектор электромагнитного поля на Arduino
Это простое устройство способно обнаруживать даже очень слабые электромагнитные поля. Относительная напряженность поля отображается в графическом виде на ЖК-индикаторе, дополнительно прибор сигнализирует звуковым зуммером и светодиодом (Рисунок 1).
Рисунок 1. | Внешний вид детектора электромагнитного поля. |
Схема соединений компонентов прибора в среде Fritzing изображена на Рисунке 2. (Схема в более высоком разрешении доступна для скачивания в разделе загрузок). Как видно на рисунке, схема очень проста и состоит из платы Arduino Nano, двустрочного ЖК-индикатора, зуммера, светодиода, переключателя и батареи питания 9 В.
Рисунок 2. | Принципиальная схема высокочувствительного детектора электромагнитного поля. |
Основой прибора является плата Arduino Nano. В качестве датчика используется отрезок медного провода диаметром 1.5 мм, но вы можете использовать любой тип провода. Чувствительность прибора можно регулировать программно (в исходном коде), а также путем изменения номинала резистора, включенного между землей и аналоговым входом A0. Можно предусмотреть в конструкции несколько резисторов и подключать их в схему с помощью переключателя. В авторском варианте с помощью переключателя выбирается один из двух резисторов и, соответственно, степень чувствительности прибора. Таким образом, прибор можно откалибровать, сравнивая его показания с промышленным решением.
Светодиод подключен к выходу D10, звуковой зуммер к выходу D9. ЖК индикатор 16×2 подключается к плате Arduino по параллельному 4-битному интерфейсу. Для регулировки контрастности индикатора используется подстроечный резистор.
Программная часть прибора (скетч Arduino) представляет собой комбинацию двух Arduino-проектов: из проекта измерителя уровня громкости на Arduino KTAudio используется часть для работы с ЖК-индикатором, а из проекта детектора электромагнитного поля Aaron ALAI EMF Detector используется часть для работы с сенсором. Автор внес некоторые коррективы для повышения стабильности работы устройства. Скетч доступен для скачивания в разделе загрузок.
На видео ниже видно, что прибор может легко обнаруживать электромагнитные поля, создаваемые скрытыми силовыми кабелями электрической сети в доме, даже если они не подключены к потребителю. Электромагнитное поле от старого ЭЛТ-монитора может быть обнаружено на расстоянии 3 м и более.
Все компоненты прибора можно разместить в небольшом корпусе (Рисунок 3).
Рисунок 3. | Вариант расположения компонентов детектора электромагнитного поля в корпусе. |
Загрузки
Перевод: Vadim по заказу РадиоЛоцман
Простой детектор-индикатор электромагнитного излучения на 555-м таймере
Горожане, и не только они, уже много лет живут в среде, которая сильно зашумлена электромагнитными излучениями (ЭМИ) разной частоты. Причем уровень ЭМИ постоянно растет. Если есть подозрение, что в том или ином месте повышенный уровень ЭМИ, желательно локализовать эти места, принять меры по уменьшению ЭМИ или, по возможности, просто не бывать в этих местах. Помочь проверить наличие повышенного уровня ЭМИ может простейшее устройство, рассмотренное в этой статье.
Источников электромагнитного излучения (ЭМИ) существует множество — это и линии электропередачи (ЛЭП), базовые станции сотовой связи, электротранспорт, беспроводные и мобильные телефоны, передатчики радиостанций, включая любительские, и многое другое. Заметим, что максимально допустимый уровень ЭМИ для человека 0,2 мкТл.
В таблице приведена информация об уровнях и превышении нормы ЭМИ ряда самых распространенных бытовых источников излучения, которая была обнаружена на одной из страниц сайта Гамма 7 [1].
Источник ЭМИ | Уровень излучения (мкТл) | Превышение нормы (раз) |
Компьютер | 1…100 | 5…500 |
Холодильник | 1 | 5 |
Кофеварка | 10 | 50 |
СВЧ печь | 8… 100 | 40…500 |
Электробритва и фен | 15…17 | 75…85 |
Провод от лампы | 0.7 | 3.5 |
Трамвай, троллейбус | 150 | 750 |
Метро | 300 | 1500 |
Сотовый телефон | 40 | 2000 |
Электромагнитное загрязнение в вашей квартире, на даче, на работе или в учебном заведении особенно вредно для пожилых людей, больных и детей и может привести к проблемам со здоровьем.
Для примитивного контроля критического уровня ЭМИ можно изготовить простейший детектор индикатор ЭМИ на 555-м таймере, который может предупредить пользователя о существенных изменениях электромагнитной среды. Схема такого индикатора показана на рис.1. Он имеет малую себестоимость и может быть изготовлен за один вечер даже начинающим радиолюбителем. Схема устойчиво работает при напряжении питания в пределах 4,5…6 В.
В простейшем варианте устройство имеет антенну А из медной проволоки длиной от 1 м до 10 м и более. Она может быть установлена на стене, окне, двери или вне дома — везде, где ожидается наличие ЭМИ.
Уровень входного сигнала, поступающего на транзистор с антенны, зависит от длины, положения антенны А и параметров сигнала.
Рассматриваемое устройство не очень чувствительно, так как было сделано для работы в относительно «шумной» городской среде.
Диоды D1-D4 и ограничивающий резистор R1 — двухсторонний диодный ограничитель, обеспечивающий защиту базового перехода транзистора Q1. С1 — разделительный конденсатор.
Транзистор Q1 — это усилитель входного сигнала.
Резистор смещения R2 используется для выбора оптимального режима Q1.
В качестве Q1 можно использовать транзисторы ВС550С, PN2222A, ВС109С или аналогичные популярные транзисторы.
Усиленный сигнал с коллектора Q1 поступает на вывод 2 микросхемы таймера IC1, которая включена как одновибратор (ждущий мультивибратор). Отрицательные перепады сигнала на выводе 2 IC1 обеспечивают запуск одновибратора, переводя его из устойчивого состояния в неустойчивое. Рассмотрим работу одновибратора подробнее.
В первоначальном состоянии вывод 7 IC1 «сидит» на земле и конденсатор С2 разряжен. В момент поступления на вход 2 таймера 555 короткого импульса запуска отрицательной полярности уменьшается напряжение на выводе 2 более чем до 30% напряжения источника питания. При этом переключается внутренний триггер микросхемы, выключая цепь, замыкавшую ранее накоротко конденсатор С2 (размыкается внутренний транзисторный ключ микросхемы, подключенный к выводу 7). Устройство переходит в неустойчивое состояние. На выходе 3 таймера 555 появляется напряжение высокого уровня. Конденсатор С2 заряжается. Напряжение на емкости С2 растет по экспотенциальному закону. Одновибратор находится в таком состоянии на протяжении всего времени заряда, даже если на вход будут еще поступать импульсы. Постоянную времени заряда С2 можно определить по формуле: τ=C2·R4. Временной интервал, в течение которого на выходе 3 таймера 555 присутствует высокий логический уровень, можно вычислить по следующей формуле: T=1,1R4C2.
Отметим, что скорость заряда конденсатора С2 и величина напряжения, при котором срабатывает компаратор, прямо пропорциональна напряжению питания, что не оказывает никакого действия на продолжительность выходного импульса одновибратора.
При достижении на конденсаторе С2 напряжения примерно равного 60% от напряжения питания схемы, внутренний компаратор микросхемы переводит триггер микросхемы в изначальное положение, а микросхема переходит в исходное устойчивое состояние. Замыкается внутренний ключ микросхемы, подключая вывод 7 IC1 на корпус, быстро разряжая конденсатор С2. При этом напряжение на выходе 3 таймера 555 появляется электрический потенциал высокого уровня (лог. «1»), Сформированные таким образом положительные импульсы с выхода одновибратора (вывод 3 IC1), включая пьезоэлектрический зуммер BZ1 и засвечивая светодиод D5.
Звуковую и световую сигнализацию можно выполнить и по схеме, показанной на рис.2.
В случае если превышение нормы ЭМИ обусловлено наличием вблизи проверяемого места радио-, теле- или иных передатчиков, передающих антенн и т.п., то входную цепь устройства необходимо сделать избирательной, установив на входе колебательный контур (рис.3,а) или магнитную (ферритовую) антенну (рис.3,б).
Номиналы деталей и конструкция магнитной антенны зависят от параметров сигналов и подбираются индивидуально.
Ссылки
Автор: Петр Петров, г. София, Болгария
Делаем простой детектор СВЧ-поля » Индикатор СВЧ » Наука » Обзоры » Лучшее 2015
Делаем простой детектор СВЧ-поля
Категории: Наука, Обзоры
Вам интересно, в каком из ваших мобильных телефонов самый мощный передатчик, в нижней или верхней части вашего смартфона стоит передающая антенна, горизонтально расположена или вертикально, что больше излучает микроволновка или телефон?
Предлагаем вам сделать своими руками простенький детектор электромагнитного СВЧ-излучения. Этот детектор пригодится также в настройке и сравнении характеристик разных передатчиков и антенн, позволит определить в горизонтальной или вертикальной поляризации передается сигнал и т. д..
Категории и теги: Наука, Обзоры » Индикатор, СВЧ, Детектор, Датчик, Электромагнитного, Поля, Диод, Лампочка.
Итак, самое сложное — это найти СВЧ диод. Например, у меня завалялось несколько еще с советских времен.
Для нашего детектора подойдут диоды ГД507А, Д405, Д403, КД521, КД522, КД5хх, Д18, Д20, BAT62, 1N5711 и другие.
Чтобы определить, какой из имеющихся диодов является сверхвысокочастотным, понадобится цифровой или стрелочный микроамперметр или вольтметр, проводок длиной около 10-18 см, смартфон или мобильный телефон в режиме разговора и собственно диоды.
Собираем все, как указано на фото. Можно параллельно щупам тестера (мультиметра) подключить конденсатор, но на практике работоспособность сохраняется и без конденсатора.
Если ваш тестер показал какие-то микроамперы или микровольты, значит, это диод СВЧ, и в ваших руках уже простенький индикатор электромагнитного поля.
Для более усовершенствованной конструкции нам понадобится: два СВЧ диода, парочку керамических SMD конденсаторов от 500 пФ до 0,5 мкФ, светодиод для грубой индикации, ферритовый сердечник с одним витком двойного провода и маленький кусочек фольгированного стеклотекстолита. Эти детали можно одолжить с нерабочих компьютерных (и не только) комплектующих. А вообще схемку можно намного упростить, при этом она не потеряет свою работоспособность. Из инструментов понадобиться паяльник, олово и т. д.
На стеклотекстолите рисуем, например, маркером дорожки, предварительно очистив и обезжирив, потом погружаем фольгированной стороной вниз в раствор хлорного железа (1 часть на 3 части воды, купить можно в ближайшем магазине радиодеталей) или травим в растворе перекиси водорода и лимонной кислоты (в 100 мл 3% раствора перекиси водорода, купленной в аптеке, добавить 30 г лимонной кислоты из любого продуктового магазина и чайную ложку поваренной соли, во время травления желательно подогреть раствор до 50 градусов, только помните, что перекись в открытом состоянии долго не хранится, поэтому нужно все делать быстро).
После травления моем плату в воде и в спирте от краски. Если остались мелкие участки, незатронутые раствором, удаляем их скальпелем или другим подходящим инструментом.
В результате у меня получилось три разных датчика.
Для точного измерения я пользуюсь микроамперметром, подключенным к датчику.
Для грубого измерения просто смотрим на впаянный светодиод.
После припайки деталей нужно решить, на какую частоту настраивать датчик. Для этого с обоих сторон надо припаять отрезки провода определенной длины, например:
На практике датчик, настроенный на частоту 2,4 Ггц с длиной обоих штырей по 31 мм, работает и на 900 Мгц, только измеряемые значения меньше. Чем толще используется проволока для штырей, тем шире получится частотный диапазон детектора.
Вместо штырей можно напрямую припаять СВЧ кабель или нужный вам разъем, штекер для прямого подключения разных антенн, например, антенну с круговой поляризации, как на фото.
Ещё более проще можно сделать датчик из 1 вольтовой лампочки типа СМН-1,5-12-1, припаяв к её контактам штырьки соответствующей длины.
При помощи датчика на диодах, собранному по вышеуказанному методу, можно замерять излучаемую мощность даже ниже 10 мВатт.
В ближайшем будущем будет опубликовано несколько интересных статей с применением этого индикатора.
Если есть вопросы, задавайте здесь, в комментариях.
Теги: Индикатор, СВЧ, Детектор, Датчик, Электромагнитного, Поля, Диод, Лампочка
Новое по теме: Наука, Обзоры
Категория: Наука, Обзоры
| 20-05-2015, 18:42 | Просмотров: 64929 | Комментарии (7)
Реклама
Комментарии:
Доброго дня!
А какой из приведенного списка диодов оказался. оптимальным для такой простой конструкции?
18 января 2017 12:15
Romuald
молодец интересная статейка ждем продолжения
21 декабря 2017 00:28
На огненном ТВ(ютуб)показано более подробно
Сергей Ч.
Спасибо за интересную статью!
Подскажите пожалуйста откуда именно должно исходить штыки, прямо от точки подсоединения вертикального диода, или не имеет значения?
Припой на медных штырях как то влияет на чувствительность?
29 октября 2018 14:15
ВалерийЕвс
Да ничего оно не работает!У меня абсолютно точная копия!смд светодиод 0.20мА потребления.НИ.ИГА!Автор яесли что я скину фото!все компоненты новые!
2 ноября 2018 05:20
Если диоды высокочастотные то будет работать в любом варианте, при слабом сигнале светодиод не засветиться, нужно измерять при помощи мультиметра. Если замерять сигнал смартфона то нужно учитывать что они максимальную мощность излучают только при минимальном сигнале..
2 ноября 2018 08:37
whoim
НЕОБЫЧНЫЙ ДЕТЕКТОР ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ
Это интересное устройство позволяет услышать мир электромагнитного излучения, что нас окружает. Оно преобразует колебания высокой частоты излучения, генерируемого разнообразными электронными устройствами в слышимую форму. Можно использовать его возле компьютеров, планшетов, мобильных телефонов и т. д. Благодаря ему вам удастся услышать действительно уникальные звуки, создаваемые работающей электроникой.
Принципиальная электросхема
Схема предполагает реализацию данного эффекта с как можно наименьшим числом радиоэлементов. Дальнейшие улучшения и исправления лежат уже на вашем усмотрении. Некоторые значения деталей вы можете подобрать для своих потребностей, другие являются постоянными.
Процесс сборки
Сборка предполагает использование макетной платы размером не менее 15 x 24 отверстия, и особое внимание обращается на расположение элементов на ней. На фотографиях показано рекомендуемое расположение каждого из радиоэлементов и какие связи между ними выполнить. Перемычки на печатной плате можно выполнить из фрагментов кабеля или отрезанных ножек от других элементов (резисторы, конденсаторы), которые остались после их монтажа.
После впайки катушек можно установить конденсаторы C1 и C2. Их емкость составляет 2,2 мкФ и определяет нижнюю частоту среза звуков, которые будут услышаны в наушниках. Чем выше значение ёмкости, тем ниже звуки воспроизводящиеся в системе. Большая часть мощного электромагнитного шума лежит на частоте 50 Гц, так что есть смысл его отфильтровать.
Можно поставить в панельку операционный усилитель любой со стандартными выводами, например OPA2134, NE5532, TL072 и другие.
Дополнительные возможности
При испытаниях оказалось, что устройство очень чувствительно на источника поля. Вы можете услышать, например, как обновляется экран в мобильном телефоне, или как красиво поет кабель USB во время передачи данных. Приложенный к включенному громкоговорителю работает как обычный и вполне точный микрофон, который собирает эл-магнитное поле катушки работающего динамика.
Видео работы детектора ВЧ
Как сделать детектор электромагнитного излучения своими руками
Вокруг нас постоянно находится электромагнитное излучение, но человеческому слуху оно недоступно. Если вы хотите услышать электромагнитное излучение, то можно воспользоваться специальным прибором, который мы изготовим собственными руками.
Посмотрим как это делает автор в видео:
Для изготовления детектора электромагнитного излучения нам потребуется:
— старый кассетный плеер;
— клей;
Кассетный плеер нужно разобрать и достать оттуда плату из самого корпуса. Рекомендуется ознакомиться с платой не только для саморазвития, но и для того, что бы при сборке и разборке этого девайса не сломать никакие детали. Эта часть очень чувствительна к электромагнитным волнам.
Самая важная деталь на плате – это считывающая головка, она в последующем нам пригодится.
Возле считывающей головки есть два проводка, которые закреплены болтиками. Эти болтики нужно будет открутить. После того, как болтики открутим, должна остаться считывающая головка, которая будет болтаться на шлейфе. С ней нужно быть предельно аккуратно, чтобы ее не оторвать.
Далее мы плату собираем опять в корпус, а головку приклеиваем на наружную часть корпуса с помощью клея.
Если в плеере нет внешнего динамика, то в специальный разъем присоединяем обычные наушники, которые помогут нам услышать электромагнитные волны.
Теперь мы прислоняем считывающую головку к телевизору. Мы можем услышать электромагнитное излучение. Излучение можно услышать на расстоянии до 40 см, чем дальше мы отходим, тем хуже будет слышен звук. Важно отметить, что сильно излучение нам дает старый телевизор (кубик).
Если присоединить наше устройство к телевизорам нового поколения (жидкокристаллический), то мы тоже услышим помехи, но уже не такие сильные.
Большим удивлением стал тот факт, что даже пульт для телевизора излучает электромагнитное излучение.
Не секрет, что излучение идет и от телефона. При проверке звук был похож на тот, когда вы звоните и у вас включены колонки. Излучение идет абсолютно от любого телефона, даже от самого крутого и навороченного, при этом не обязательно набирать номер, можно залезть в интернет.
Электромагнитное излучение выделяют даже обычные зарядки от телефона и ручка двери.
С помощью обычного плеера можно услышать излучения, которое не слышно ушами и не видно глазами.