Индукционный датчик своими руками схема

Содержание
  1. Digitrode
  2. цифровая электроника вычислительная техника встраиваемые системы
  3. Индуктивный датчик приближения на основе TCA505 своими руками
  4. УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК
  5. Схема принципиальная датчика
  6. Изготовление индуктивного датчика
  7. Индуктивный датчик: принцип работы, схемы подключения, характеристики
  8. Назначение
  9. Устройство
  10. Принцип работы
  11. Расстояние срабатывания и объект воздействия
  12. Характеристики (параметры)
  13. Примеры подключения на схемах
  14. Двухпроводных датчиков индуктивности
  15. Трехпроводных датчиков индуктивности
  16. Четырехпроводных датчиков индуктивности
  17. Пятипроводных датчиков индуктивности
  18. Преимущества и недостатки
  19. Так что же это за «хитрость» — индуктивный датчик приближения?
  20. Один из вариантов этой схемы изображён на рис. 1
  21. Принципиальная схема резонансного индуктивного датчика приближения приведена на рис. 2

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Индуктивный датчик приближения на основе TCA505 своими руками

Датчик приближения – это датчик, способный обнаруживать наличие близлежащих объектов без какого-либо физического контакта. Датчик приближения часто излучает электромагнитное поле или пучок электромагнитного излучения и ищет изменения в поле или обратном сигнале.

1558488202 sensor1

Опубликованная здесь схема представляет собой индуктивный датчик приближения, который используется для бесконтактного обнаружения металлических объектов. Схема может быть использована для обнаружения металлических предметов или в качестве датчика положения (датчика расстояния).

В данном случае микросхема TCA505 используется для в качестве основы индуктивного бесконтактного переключателя, который может обнаруживать металлические объекты в диапазоне 5-10 мм. Резонансный контур генератора LC реализован с использованием открытого феррита и параллельно подключенного конденсатора (вывод LC). Если металлический объект перемещается ближе к открытой стороне феррита, энергия берется из резонансного контура, и амплитуда колебаний соответственно уменьшается. Это изменение амплитуды передается на пороговое переключение с помощью демодулятора и активирует выходы.

Схема была проверена с напряжением 12 В постоянного тока, однако она также может работать с более высоким напряжением питания, до 42 В с небольшим изменением значений компонентов. Обычно светодиод D2 горит, когда катушка обнаруживает металлический объект. Светодиод D2 гаснет, а светодиод D1 включается, поэтому обычно Out-2 обеспечивает низкую выходную мощность, а Out-1 обеспечивает высокую выходную мощность при обнаружении металлического объекта. Выходной сигнал Q3 переходит в логическую «1», а Q1 в логический «0», оба выхода с открытым коллектором. Потенциометр PR1 помогает отрегулировать расстояние чувствительности датчика. Выход каждого транзистора может напрямую управлять малым реле, так как каждый выход обеспечивает 50 мА тока. Сенсорная катушка может быть изготовлена с использованием металлического сердечника 14 мм, индуктивность должна быть от 540 мкГн до 640 мкГн. Схема подключения выглядит следующим образом.

1558488192 sensor2

Расположение компонентов на плате следующее:

Источник

УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК

Приветствую уважаемых радиолюбителей. Предлагаемый вашему рассмотрению индукционный датчик может использоваться во многих устройствах – сигнализациях отрывания дверей или снятия с полок товаров, в тахометрах, в искробезопасных указателях уровня жидкостей, вместо прерывателей в бензиновых двигателях, в элементах автоматики, к примеру в отключении клапана набора воды в ёмкостях. Схема взята из классических её прототипов, но упрощена и сбалансирована. Она достаточно проста, но, при этом и надёжна, и отличается чёткостью своей работы, легко изготавливается, налаживается и встраивается в различные устройства.

Схема принципиальная датчика

indukcionnyj datchik diy 2

Схема построена как генератор с индуктивной обратной связью. Колебательный контур на элементах: L2, C2 задаёт частоту, катушка L1 и ёмкость C1 обратной связи обеспечивают генерацию, резисторы: R2, R4 задают режим транзистора по постоянному току и стабилизируют его. Развязку по высокой частоте обеспечивает цепочка: R1, C3.

Важно! Ёмкость С3 должна быть импульсной, хорошего качества и номиналом как указано в схеме.

Формирователь выходного сигнала выполнен по схеме удвоения напряжения на элементах: C4, C5, VD1, VD2, R3 диоды любые высокочастотные, резистор R3 подбирается в зависимости от необходимой скорости убывания выходного напряжения при срыве генерации. При наличии металлического лепестка между катушками генерация срывается.

Печатная плата изготавливается из фольгированного стеклотекстолита, для её крепления используется 2 мм. отверстие, в которое вставляется болт с надетой на него ограничивающей бобышкой (или просто кусок хлорвиниловой трубки от капельницы) и зажимается всё гаечкой, либо болт вкручивается в нарезанную на каком-то основании резьбу.

Изготовление индуктивного датчика

indukcionnyj datchik diy 3

Из прессшпана вырезается крестовидная развёртка коробочки, в её дне прокалывается четыре отверстия, в которые продевают гибкие многожильные провода для выводов катушек, к ним подпаивают концы катушек, развёртку сгибают для получения коробочки, обматывают скотчем или изолентой, продевают насквозь ещё один пластиковый штырь (пластик после извлекается и получается отверстие для крепления), центрируется и крепится также штырь с катушками и, наконец, заливают эпоксидкой. Гибкими выводами катушки подпаиваются каждая на своё место, фазируются для получения генерации, датчик крепится на своё место, рядом с ним плата генератора.

В нынешнее время такие катушки или подобные им можно найти во многих уже не нужных, сломанных или устаревших устройствах, к примеру в флоппи-приводах. Есть и готовые и катушки и датчики, но не всегда их можно приобрести, и не всегда это дёшево. Ну и сделать своими руками тоже для кого-то удовольствие, особенно если будет работать не хуже, а где-то и лучше готовых изделий.

5204420058

Источник

Индуктивный датчик: принцип работы, схемы подключения, характеристики

В современных станках и высокоточном оборудовании, где важно контролировать положение конструктивных элементов устанавливается индуктивный датчик. Для чего применяется данное устройство, какие разновидности и способы подключения существуют, как оно работает, мы рассмотрим в данной статье.

Назначение

Индуктивный датчик предназначен для контроля перемещения рабочего органа без непосредственного контакта с ним. Основной сферой применения для него является станочное оборудование, точные медицинские приборы, системы автоматизации технологических процессов, измерения и контроля формы изделия. В соответствии с положениями п.2.1.1.1 ГОСТ Р 50030.5.2-99 это датчик, который создает электромагнитное поле в области чувствительности и обладает полупроводниковым коммутатором.

Сфера применения индуктивных датчиков во многом определяется их высокой надежностью и устойчивостью к воздействию внешних факторов. На их показания и работу не влияют многие факторы окружающей среды: влага, оседание конденсата, скопление пыли и грязи, попадание твердых частиц. Такие особенности обеспечиваются их устройством и конструктивными данными.

Читайте также:  Детские костюмы фиксики своими руками

Устройство

Развитие сегмента радиоэлектроники привело не только к совершенствованию первоначальных механизмов, но и к возникновению принципиально новых индуктивных датчиков. В качестве примера рассмотрим один из простейших вариантов (рисунок 1):

ustroystvo induktivnogo datchikaРис. 1. Устройство индуктивного датчика

Как видите на рисунке, в его состав входят:

Принцип работы

Принцип действия индуктивного датчика заключается в способности электромагнитного поля изменять свои параметры, в зависимости от значения магнитной проводимости на пути протекания потока. В основе его работы лежит классический вариант катушки, намотанной на сердечник.

magnitnoe pole v sostoyanii pokoyaРис. 2. Магнитное поле в состоянии покоя

При протекании электрического тока I по виткам этой катушки генерируется магнитное поле (см. рисунок 2), результирующий вектор магнитной индукции B которого определяется по правилу Правой руки. При движении магнитного поля по сердечнику, ферромагнитный материал обеспечивает максимальную пропускную способность. Но, как только линии магнитной индукции попадают в воздушное пространство, магнитная проводимость существенно ухудшается и часть поля рассеивается.

magnitnoe pole pri vvedenii obekta srabatyvaniyaРис. 3. Магнитное поле при введении объекта срабатывания

При внесении в область действия поля индуктивного датчика объекта срабатывания (рисунок 3), изготовленного из металла, напряженность линий индукции резко изменяется. В результате чего усиливается поток и меняется его значение, а это, в свою очередь, приводит к изменению электрической величины в цепи катушки за счет явления взаимоиндукции. На практике этот сигнал слишком мал, поэтому для расширения предела измерения индуктивного датчика в их схему включается усилитель.

Расстояние срабатывания и объект воздействия

В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.

oblast i obekt srabatyvaniyaРис. 4. Область и объект срабатывания

Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.

Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:

zavisimost rasstoyaniya srabatyvaniya ot materialaРис. 5. Зависимость расстояния срабатывания от материала

На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:

По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.

odinaryy i differentsialnyy datchikРис. 6. Одинарый и дифференциальный датчик

По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.

Характеристики (параметры)

При выборе индуктивного датчика для решения конкретной задачи руководствуются параметрами цепи, в которых он будет функционировать и основной логикой схемы. Поэтому обязательно проверяется соответствие их параметров:

Примеры подключения на схемах

Конструктивные особенности индуктивных датчиков определяют количество их выводов и способ дальнейшего подключения. В виду того, что существует четыре наиболее распространенных типа, рассмотрим примеры схем их подключения.

Двухпроводных датчиков индуктивности

Как видите на схеме выше, двухпроводные индуктивные датчики применяются исключительно для непосредственной коммутации нагрузки: контакторов, пускателей, катушек реле в качестве электронного выключателя. Это наиболее простая схема и модель, но работа конкретной модели сильно зависит от параметров подключаемой нагрузки.

Трехпроводных датчиков индуктивности

В трехпроводной схеме присутствует два вывода на питание самого индуктивного датчика, а третий, предназначен для подключения нагрузки к нему. По способу коммутации их подразделяют на PNP и NPN, первый вид коммутирует положительный вывод, откуда и происходит название, второй тип коммутирует отрицательный вывод.

Четырехпроводных датчиков индуктивности

По аналогии с предыдущим датчиком, четырехпроводный также использует два вывода 1 и 3 для получения питания. А вот 2 и 4 вывод используется для подключения нагрузки с той разницей, что коммутация для обеих нагрузок будет противоположной.

Пятипроводных датчиков индуктивности

В пятипроводном индуктивном датчике два вывода применяются для подачи напряжения на чувствительный элемент датчика, в рассматриваемом примере это 1 и 3. Два вывода 2 и 4 подают питание на разные нагрузки, а управляющий вывод 5 позволяет выбирать различные режимы работы и менять логику переключений.

Преимущества и недостатки

В сравнении с другими типами сенсорных устройств индуктивные датчики продолжают занимать весомую нишу, наращивая темпы внедрения в различные сферы промышленности и отрасли народного хозяйства. Такое частое применение объясняется рядом весомых преимуществ:

Но, вместе с тем, существуют и недостатки индуктивных датчиков, которые не позволяют использовать их повсеместно. Среди наиболее существенных минусов являются громоздкие размеры, не позволяющие монтировать их в любых устройствах. Также к недостаткам относится зависимость параметров работы от температурных и других факторов, вносящих поправку на точность.

Источник

Так что же это за «хитрость» — индуктивный датчик приближения?

Рассматриваются принцип действия, схемотехника, особенности двух типов индуктивных датчиков приближения — генераторного и резонансного. Даётся краткая характеристика современного европейского рынка индуктивных датчиков приближения.

Читайте также:  Детский сейф своими руками

В 50-е годы ХХ века, в эру дискретных корпусных электронных компонентов, была разработана оригинальная генераторная схема, выполненная всего на четырёх-пяти транзисторах, которая успешно применяется до сих пор и положила начало производству миллионными тиражами малогабаритных индуктивных датчиков, основное назначение которых — создавать логический (бинарный) электрический сигнал, когда металлический предмет (target — мишень) приближается к датчику на малое расстояние (обычно это расстояние составляет от долей миллиметра до ста миллиметров).

Эти индуктивные датчики оказались очень доступным, простым, надёжным, дешёвым элементом систем управления приводов, станков, автоматических линий, систем измерения физических величин. Пожалуй, десятки, если не сотни, фирм по всему миру выросли на производстве этих элементов АСУТП — индуктивных датчиков приближения. Например, в США в 1990 г., по крайней мере, 35 компаний занималось производством подобных датчиков. По оценкам журнала «Control Engineering Europe» глобальный рынок датчиков приближения оценивался в 2002 г. в 2,7 млрд. Евро и его рост составляет 5 % в год (имеется в виду весь рынок датчиков приближения: индуктивных, оптических, ёмкостных, ультразвуковых, магнитных), а европейский рынок датчиков приближения — в 1 млрд. Евро. По мнению этого журнала, главными производителями электронных датчиков приближения являются фирмы: ABB, Balluff, Banner, Baumer Electric, Bernstein, Carlo Gavazzi, Datasensor, ifm electronic, Leuze, Pepperl + Fuchs, Schmersal, Schneider, Sick, Siemens, Turck (приведены в алфавитном порядке).

Хорошо видно, что костяк составляют немецкие фирмы, и это является одним из «кирпичиков» лидерства немецкого машиностроения в мире. Если сузить этот список до тройки самых главных производителей индуктивных датчиков в Германии, то места распределятся так: 1-е место ifm electronic; 2-е место Pepperl + Fuchs; 3-е место Balluff.

Фирмы, специализирующиеся на производстве индуктивных датчиков, выпускают огромный ассортимент, насчитывающий до тысячи и более типоразмеров. Некоторые эксплуатационные и технические параметры индуктивных датчиков приближения указывают на совершенство технологии фирмы-производителя:

Надёжность серийных индуктивных датчиков такова, что специальные их исполнения применяются в наиболее ответственных местах, связанных с безопасностью людей: опасные для персонала ТП или, например, в АСУ современными канатными дорогами.

Технология производства датчиков настолько отработана, что фирмы-производители гарантируют сроки эксплуатации до трёх-пяти лет. Например, фирма ifm electronic указывает о пятилетней гарантии в своих каталогах. Сроки службы датчиков могут составлять 20 лет и более. Причём, это уже проверено на практике, поскольку по сей день работают целые производства, закупленные комплектно в Германии в 80-х годах ХХ века и снабжённые такими датчиками.

Схемотехника современных индуктивных датчиков приближения разнообразна и может значительно отличаться от своих «прародителей» середины ХХ века. Например, для автоматизации управления больших технологических комплексов или сложных машин требуется устанавливать десятки и сотни индуктивных и иных датчиков. В этом случае ощутимую выгоду на линиях связи может дать новое поколение двухпроводных датчиков с интерфейсом ASi (actuatorsensor interface), когда к одной двухпроводной медной шине подключаются до 248 датчиков. При этом, по одной и той же шине проходит электропитание датчиков, исполнительных механизмов и получение информации с датчиков. По существу, один датчик с ASi интерфейсом — это микроконтроллер со своей системой передачи данных.

Один из вариантов этой схемы изображён на рис. 1

«Гвоздь» схемы — генератор колебаний на транзисторной сборке VT1 с двухобмоточным индуктивным чувствительным элементом. Параметры двух индуктивных катушек, уложенных на один сердечник, конденсаторы и резисторы рассчитываются и подбираются так, что при подключении питания в генераторе самопроизвольно возникают колебания. Причём, достоинство генератора — в способности к колебаниям в очень широком диапазоне питающих напряжений. Отсюда и получается широкий диапазон допустимых напряжений питания во многих индуктивных датчиках: 10. 30 В постоянного тока. Конструктивное исполнение катушек индуктивности может быть самое разнообразное: обмотки, уложенные в броневой сердечник; обмотки, намотанные на сердечник произвольной формы; два стандартных сердечника типа ДМ, соединённые между собой; просто обмотки без сердечников. Сердечники лишь концентрируют, перераспределяют в пространстве около обмоток потоки рассеяния. Большинство изготовителей применяют сердечник-«чашку», чтобы бóльшую часть потоков сконцентрировать в открытой области «чашки». Здесь и будет наблюдаться максимальная чувствительность генератора к приближению металлов. Однако, главное — подобрать параметры колебательного контура так, чтобы обеспечивалось возникновение колебаний при включении питания.

Теперь, если к катушкам близко поднести металлический предмет или любой материал (мишень), в котором могут наводиться вихревые токи, то способность колебательного контура к колебаниям резко падает из-за взаимоиндукции катушек и мишени. Если продолжить сближение катушек с мишенью, колебания практически прекратятся или их амплитуда уменьшится в несколько раз. Таким образом, чувствительность генератора к приближению металлического или магнитного материала очень высока, что также является важным достоинством схемы. На коллекторе 7 транзисторной сборки уже присутствует демодулированный сигнал, который поступает на компаратор — триггер Шмитта на транзисторах VT2, VT3. Поскольку на коллекторе 7 имеется аналоговый сигнал, находящийся в функциональной зависимости от расстояния между катушками и приближающимся предметом, его можно использовать для измерительных целей, т. е. определения этого расстояния. Компаратор создаёт релейный (бинарный) усиленный выходной сигнал. Генераторной схема названа потому, что чувствительным элементом схемы является генератор: есть колебания в генераторе — мишень находится вне чувствительной зоны катушек, колебания нарушились — мишень находится внутри чувствительной зоны. Светодиод VD1 будет светиться и к нагрузке будет прикладываться напряжение питания, когда мишень приближена к чувствительному элементу. Фирмы теперь уже, практически, не выпускают датчиков без встроенных в корпус индикаторных светодиодов. Такой светодиод в выходной цепи удобен при монтаже датчика и контроле его работоспособности. В случае индуктивного характера (например, реле) нагрузку следует шунтировать диодом VD3, чтобы ликвидировать паразитные всплески в выходном сигнале датчика. Диод VD2 выполняет важную функцию защиты всей схемы от неправильной полярности питания. Недостатком такой генераторной схемы индуктивного датчика приближения является разное расстояние переключения датчика для разных материалов мишени — так называемый, коэффициент редукции. Производители приводят его в своих каталогах обычно для материалов из стали, алюминия, латуни.

Читайте также:  Гусеничный клей своими руками

Авторами статьи в Московском Энергетическом институте (1988 г.) был разработан иной индуктивный датчик приближения, работающий на резонансном принципе, т. е. индуктивный датчик малых перемещений. Резонансный принцип действия для чувствительных элементов фотодатчиков был предложен ещё раньше и хорошо показал себя в измерительном электронном оборудовании для Московской Олимпиады (1980 г.).

Принципиальная схема резонансного индуктивного датчика приближения приведена на рис. 2

Чувствительным элементом датчика является катушка с сердечником L1, которая вместе с конденсатором С1 составляет параллельный резонансный контур, запитываемый от RC генератора несущей частоты.

На рис. 1 чувствительный элемент (две катушки с сердечником) является составной частью генератора несущей частоты. В двух описываемых схемах форма колебаний (синусоидальные, прямоугольные или иные) большого значения не имеет. В резонансной схеме (см. рис. 2) несущие колебания создаются регулируемым RC генератором, состоящим из двух элементов микросхемы 564ЛН2. Несущие колебания через разделительный резистор R2 поступают в резонансный контур L1-C1. Частота резонанса контура должна быть в пределах регулировки генератора резистором R1. На частоте резонанса внутреннее сопротивление параллельного резонансного контура наибольшее. Поэтому, амплитуда на затворе полевого транзистора VT1 максимальная. Реальный LC контур имеет и боковые резонансы, но амплитуда колебаний напряжения в контуре при боковых резонансах значительно меньше, чем на частоте основного резонанса. Генератор настраивается резистором R1 на частоту колебаний, при которой напряжение на входе компаратора максимальное (в отсутствии мишени вблизи чувствительного элемента). Поскольку внутреннее сопротивление LC контура значительное, то применяется в качестве усилителя именно полевой транзистор, имеющий большое входное сопротивление. После усилителя сигнал детектируется диодом VD2 и фильтруется фильтром R4-C3. Таким образом, на входе компаратора существует сигнал постоянного напряжения. В отсутствии мишени у чувствительного элемента сигнал напряжения на входе компаратора максимален и составляет 3. 4 В. После сближения активного чувствительного элемента и мишени, например, из углеродистой стали, в материале мишени будут наводиться вихревые токи, которые начинают взаимодействовать с чувствительным элементом индуктивного датчика. Вследствие этого, нарушается резонанс, уменьшается амплитуда напряжения на LC контуре, уменьшается напряжение на выходе фильтра и на входе компаратора. Если продолжается сближение чувствительного элемента и мишени, то уменьшение напряжения на входе компаратора составит 1,5. 2 В. Компаратор построен на двух элементах микросхемы 564ЛН2. Пороги переключения компаратора и ширина гистерезиса устанавливаются величинами сопротивлений резисторов R5, R6, R7. Гистерезис компаратора устанавливает гистерезис датчика. При сближении датчика и мишени происходит переключение выхода компаратора из логического нуля в логическую единицу. При удалении мишени происходит обратное переключение компаратора. При указанных номиналах элементов схемы включение датчика происходит на расстоянии около 1,5 мм от поверхности стальной мишени, выключение — на расстоянии около 2,5 мм от той же поверхности. Резистор R9, находящийся в коллекторной цепи выходного транзистора VT2, выполняет функцию защиты от токовых перегрузок выхода, препятствует протеканию чрезмерного выходного тока. В случае индуктивного характера нагрузки датчика (например, реле) диод VD3 будет подавлять броски напряжения в нагрузке. Диод VD1 является защитой при неправильном подключении полярности питания к датчику. В коллекторной цепи выходного транзистора, при необходимости, может быть включён светодиод с резистором для визуального контроля состояния выхода индуктивного датчика.

Таким образом, рассмотренный индуктивный датчик вырабатывает бинарный сигнал высокого уровня при сближении с мишенью и низкого уровня — при удалении от мишени. Кроме того, в измерительных целях может быть использован выходной аналоговый сигнал индуктивного датчика, который снимается с фильтра. Этот сигнал монотонно изменяется при сближении чувствительного элемента и мишени. Установлено, что при расстояниях между датчиком и мишенью до 1 мм выходной аналоговый сигнал изменяется практически линейно. Изменение аналогового сигнала составляет не менее 2 В (от состояния, когда нет стальной мишени, до состояния, когда мишень и датчик соприкасаются). Схема обладает хорошей термостабильностью. Расстояние переключения индуктивного датчика с мишенями из разных материалов практически не изменяется, т. е. коэффициент редукции близок к единице.

В данном схемотехническом решении генератора, несущая частота, а, значит, амплитуда напряжения на LC контуре, существенно зависят от стабильности напряжения питания. Поэтому, реальный допуск на изменение питающего напряжения не должен быть более ±5 %.

Очевидно, что схемотехника генератора несущей частоты, компаратора и выходного усилителя может быть весьма разнообразной и даже более термостабильной и нечувствительной к изменениям напряжения питания, чем описанные. Однако, резонансный чувствительный контур, простой усилитель на полевом транзисторе, детектор, фильтр, т. е. основа датчика, очень просты, оригинальны, надёжны и не требуют никаких подстроек.

Итак, рассмотрены две принципиальные схемы для построения индуктивных датчиков приближения. Каждая из них имеет свои достоинства. Вероятно, резонансная схема имеет больший потенциал для реализации по гибридной или интегральной технологии.

В заключении следует отметить, что западноевропейские лидеры в этой области постоянно патентуют всё новые и новые индуктивные датчики, ссылки на которые регулярно появляются в отечественных реферативных журналах электротехнической тематики. Новшества касаются как схемотехники, так и конструкции датчиков. В России работают две-три электротехнические компании по производству датчиков, использующих, в основном, первую (генераторную) схему. Их интернет-сайты приводятся в конце статьи. Заинтересованному читателю рекомендуем просмотреть сайт немецкой фирмы ifm electronic, один из удачных в этой области.

Статья впервые опубликована в журнале «Приборы и системы. Управление, контроль, диагностика.» — Москва, 2005.- № 12.- с.36-39.

Если у вас возникли какие-либо вопросы по данному материалу, вы можете задать их, написав на электронную почту соавтора статьи: ryzhovsn@list.ru

Источник: Кандидаты технических наук Андрей Павлович Габов и Сергей Николаевич Рыжов

Источник

Делаю сам
Adblock
detector