Индукционный передатчик энергии своими руками

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Простая схема беспроводной передачи энергии

Устройство беспроводной передачи энергии своими руками

Концепция беспроводной передачи электроэнергии не нова. Она была впервые продемонстрирована Николой Теслой в 1890 году. Никола Тесла использовал электродинамическую индукционную или резонансную индуктивную связь, зажигая три лампочки на расстоянии 60 футов от источника питания. В этом проекте мы также создадим мини-катушку Тесла для передачи энергии.

1558058063 wireless1

Беспроводная передача электроэнергии – это процесс подачи энергии через воздушный зазор без использования каких-либо проводов или физического соединения. В этой беспроводной системе передающее устройство генерирует изменяющееся во времени высокочастотное электромагнитное поле, которое передает энергию на приемное устройство без какого-либо физического соединения. Приемное устройство извлекает энергию из магнитного поля и подает ее на электрическую нагрузку. Поэтому для преобразования электричества в электромагнитное поле в качестве катушки передатчика и приемной катушки используются две намотанные из проводов катушки. Катушка передатчика питается переменным током и создает магнитное поле, которое в дальнейшем преобразуется в полезное напряжение на катушке приемника. В этом примере мы создадим базовую цепь беспроводного передатчика с низким энергопотреблением для зажигания светодиода.

Схема для беспроводной передачи электроэнергии для свечения светодиода проста, и ее можно увидеть на следующем изображении. Она состоит из двух частей: передатчика и приемника.

1558058116 wireless2

На стороне передатчика катушка подключена через коллектор транзистора, 17 обмоток с обеих сторон. И приемник построен с использованием трех компонентов – транзистора, резистора и катушки индуктивности с воздушным сердечником с центральным ответвлением или медной катушки. Сторона приемника имеет светодиод, подключенный через 34 витка медной катушки. Здесь используется транзистор NPN, можно взять, например, BC547.

1558058101 wireless3

Катушка является важной частью беспроводной передачи энергии и должна быть аккуратно собрана. В этом проекте катушки сделаны с использованием медной проволоки 29AWG. Формирование катушки с центральным ответвлением выполняется на стороне передатчика. Для намотки катушки требуется цилиндрический объект, например, трубка из ПВХ или пластмассовая банка.

1558058066 wireless4

Для передатчика намотайте провод до 17 витков, затем организуйте петлю для подключения центрального ответвления и снова сделайте 17 витков катушки. А для приемника сделайте 34 витка обмотки катушки без центрального ответвления.

1558058054 wireless5

Обе схемы в данном случае реализованы на макетных платах и питаются от батареи 1,5 В. Цепь не может использоваться для источника питания более 1,5 В, так как транзистор может нагреваться с чрезмерным рассеиванием мощности.

В секции передатчика транзистор генерирует высокочастотный переменный ток через катушку, а катушка создает вокруг нее магнитное поле. Поскольку катушка повернута по центру, две стороны катушки начинают заряжаться. Одна сторона катушки соединена с резистором, а другая сторона соединена с выводом коллектора NPN-транзистора. Во время состояния зарядки базовый резистор начинает проводить, что в конечном итоге включает транзистор. Затем транзистор разряжает индуктор, когда эмиттер соединен с землей. Эта зарядка и разрядка индуктора создает очень высокочастотный сигнал колебаний, который затем передается в виде магнитного поля.

Со стороны приемника это магнитное поле передается в другую катушку, и по закону индукции Фарадея, катушка приемника начинает генерировать напряжение ЭДС, которое дополнительно используется для свечения светодиода.

1558058126 wireless6

Эта небольшая схема может работать должным образом, но имеет огромное ограничение. Эта схема не подходит для передачи высокой мощности и имеет ограничение по входному напряжению. КПД тоже очень низкий. Чтобы преодолеть это ограничение, могут быть организованы двухтактные топологии с использованием биполярных транзисторов или полевых транзисторов. Однако для большей эффективности лучше использовать надлежащие микросхемы драйверов беспроводной передачи. Чтобы улучшить дальность передачи, правильно намотайте катушку и увеличьте количество витков в катушке.

Источник

Беспроводная система передачи энергии своими руками

Концепция системы беспроводной передачи энергии не нова. Многие учащиеся выбирают ее в качестве мини-проекта для школы или даже в качестве хобби.

content %D0%91%D0%B5%D1%81%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F %D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 %D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%87%D0%B8 %D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8 %D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8 %D1%80%D1%83%D0%BA%D0%B0%D0%BC%D0%B8

Впервые технология была продемонстрирована Николой Теслой в 1890 году. Индукционная электродинамика, или резонансная индукционная связь, была представлена Тесла с простой демонстрацией зажигания трех ламп накаливания от источника питания на расстоянии почти 18 метров.

Беспроводная система передачи энергии

Как следует из названия, система беспроводной передачи энергии передает электричество без проводов.

Эта система работает только на определенном расстоянии и состоит из следующих трех частей:

content %D0%91%D0%B5%D1%81%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F %D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 %D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%87%D0%B8 %D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8 %D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8 %D1%80%D1%83%D0%BA%D0%B0%D0%BC%D0%B81

Три основных типа системы беспроводной передачи энергии:

Индуктивное соединение является наиболее коммерчески используемым типом системы беспроводной передачи энергии. Этот метод используется во многих примерах повседневной жизни, таких как беспроводная мобильная зарядка, электрические зубные щетки и дистанционные ключи для роскошных автомобилей. Он довольно похож на простой трансформатор, который основан на принципе взаимной индукции между двумя цепями, связанными общим магнитным потоком.

Электричество, генерируемое катушкой передатчика, преобразуется в высокочастотное переменное магнитное поле. Это высокочастотное переменное магнитное поле принимается катушкой цепи приемника, где оно преобразуется обратно в высокочастотный переменный ток и выпрямляется катушкой приемника.

Коэффициент связи контролирует эффективность передачи мощности индуктивной связи. Эффективность системы будет максимальной на ее резонансной частоте, которая может быть рассчитана по индуктивности и емкости цепи.

Резонансная частота задается:

content %D0%91%D0%B5%D1%81%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F %D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 %D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%87%D0%B8 %D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8 %D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8 %D1%80%D1%83%D0%BA%D0%B0%D0%BC%D0%B834

В этой формуле частота представлена F и измеряется в Гц, индуктивность представлена L и измеряется в Генри, а емкость представлена C и измеряется в фарадах.

Читайте также:  Защита картера 2121 своими руками

Передача электроэнергии лазером: Начальным и конечным продуктом передачи энергии лазером является электричество, в то время как промежуточным продуктом является свет. Электричество преобразуется излучателем в луч света. Этот пучок резко фокусируется на приемнике.

Инфракрасные лазеры в основном используются в передаче энергии лазера. Фотоэлементы в приемнике настроены на частоту и длину волны лазерного луча, передаваемого от передатчика. Этот тип передачи имеет дополнительное преимущество, так как он может передавать энергию в несколько метров с минимальными потерями среды.

Микроволновая передача мощности: Микроволновая передача энергии, преобразующая электроэнергию в микроволны, считается наиболее эффективным видом беспроводной системы передачи энергии, но ее конструкция достаточно сложна.

Передатчик микроволновой системы передачи энергии имеет микроволновой генератор и волновод, который используется для направления волны в определенном направлении. Для этого метода могут быть использованы различные типы антенн, в том числе параболические рефлекторы, микрополосковые патчи или щелевые волноводные устройства.

При использовании щелевой волноводной антенны эффективность системы повышается до 95% по сравнению с другими методами, имеющими эффективность от 5% до 40%.

В сегменте приемника используется комбинация антенны и выпрямителя, известная как ректенна. Приемные микроволны непосредственно преобразуются ректенной в постоянный ток.

Построение системы беспроводной передачи энергии

content %D0%91%D0%B5%D1%81%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F %D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 %D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%87%D0%B8 %D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8 %D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8 %D1%80%D1%83%D0%BA%D0%B0%D0%BC%D0%B83

Схема имеет очень мало элементов и довольно проста в сборке. В катушке передатчика есть 10 оборотов с центральным контактом. Рекомендуется использовать толстые провода для катушки. Транзистор BD139 NPN должен использоваться с радиатором.

Схема передатчика содержит конденсатор с емкостью 4,7 нФ и катушку с 10 оборотами так же, как цепь накопителя с определенной резонансной частотой.

Катушка приемника имеет такое же количество оборотов, толщину и конденсатор равной емкости, как и передатчик, чтобы соответствовать резонансной частоте. Диод IN4148, или диод Шотки, также используется в цепи приемника в качестве полуволнового выпрямителя.

Высокочастотный переменный ток может быть эффективно выпрямлен с помощью этого диода. Однако, можно использовать и обычный диод (1N4007), но он имеет более высокое падение прямого напряжения, что может привести к небольшому снижению яркости светодиода.

Приемная цепь имеет катушку с 10 оборотами и диаметром 5 см. Катушка любого диаметра может быть использована, но диаметр как передающей, так и принимающей катушек должен быть одинаковым.

Для катушки передатчика наматывайте две катушки по 5 оборотов каждая, складывайте их в стопку, закрепляйте лентой и припаяйте центральный ответвитель. Для увеличения расстояния передачи энергии, увеличивают обмотки катушки, конденсаторы и входное напряжение, изменяя их.

Эффективность беспроводной передачи энергии

Эффективность предложенной схемы составляет почти 10% или даже меньше. Эффективность может быть рассчитана по соотношению выходной и входной мощности.

Одним из самых больших преимуществ беспроводной передачи электроэнергии является удобство, и компании инвестируют много денег только ради удобства.

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Источник

Метод электромагнитной индукции при беспроводной передаче энергии

Способ передачи электрической энергии на расстояние без использования токопроводящей среды называется беспроводной передачей электроэнергии. Уже к 2011 году было реализовано несколько удачных экспериментов в микроволновом диапазоне с мощностями в несколько десятков киловатт, при этом КПД составил около 40%.

Технологически принципы передачи электроэнергии на расстояние включают в себя, в зависимости от расстояния передачи, следующие. На малых расстояния при небольших мощностях — индукционный и резонансный методы, как например в RFID-метках и смарт-картах. На больших расстояниях и при больших мощностях — метод направленного электромагнитного излучения в диапазоне от УФ до СВЧ.

Давайте рассмотрим подробно индукционный метод. Беспроводная передача энергии посредством электромагнитной индукции подразумевает применение ближнего электромагнитного поля на расстояниях соизмеримых с 17% длины волны. Суть в том, что энергия ближнего поля не является излучающей сама по себе, здесь есть лишь небольшие радиационные и резистивные потери.

1571302289 3

Электродинамическая индукция работает так. Когда через первичную обмотку проходит переменный электрический ток, вокруг нее существует переменное магнитное поле, которое одновременно действует и на вторичную обмотку, наводя в ней переменную ЭДС и соответственно переменный ток.

Чтобы получить более высокую эффективность, взаимное расположение первичной и вторичной обмоток должно быть достаточно тесным. Если в условиях эксперимента начать отдалять вторичную обмотку от первичной, то часть магнитного поля, достигающего вторичной обмотки и пересекающего ее витки, будет становиться все меньше.

По мере удаления вторичной обмотки, даже на небольшом расстоянии индукционная связь между обмотками в конце концов станет настолько малой, что большая часть передаваемой магнитным полем энергии будет расходоваться чрезвычайно неэффективно и вообще впустую.

Подобная система в простейшем виде представлена в классическом электрическом трансформаторе. Ведь трансформатор — простейшее устройство для беспроводной передачи электроэнергии, поскольку его первичная и вторичная обмотки не связаны гальванически друг с другом. Передача энергии от первичной обмотки ко вторичной реализована в нем посредством процесса, называемого взаимная индукция. Главная функция трансформатора — повышение или понижение напряжения, подаваемого на первичную обмотку.

В бесконтактных зарядниках для мобильной техники, для электрических зубных щеток и в индукционных плитках, реализованы как раз методы электродинамической индукции. Недостаток при передаче энергии таким путем заключается в очень небольшом расстоянии эффективного действия. Для достижения надлежащей эффективности передатчик и приемник необходимо размещать очень-очень близко друг к другу, практически вплотную, чтобы они впринципе могли эффективно взаимодействовать между собой.

1571302354 1

Чтобы повысить эффективность индукционного метода, полезно внедрить в такую систему явление электрического резонанса, который позволит увеличить расстояние эффективной передачи. С добавлением в резонансную цепь колебательного контура, он своим действием в некоторой степени увеличивает расстояние эффективной передачи. Чтобы возник резонанс, передающий и приемный контур должны быть настроены на одну общую частоту.

Читайте также:  Демонтаж подоконника пластикового окна своими руками

1571302347 2

Еще больше улучшить производительность такой системы можно коррекцией формы волны управляющего тока, отклонив ее от синусоидальной к переходной несинусоидальной, импульсной.

Традиционно резонансная электродинамическая индукция используется в беспроводных зарядниках аккумуляторов мобильных устройств, наподобие сотовых телефонов и медицинских имплантатов, а также в электромобилях. В устройствах локализованной зарядки используется выбор определенной катушки передатчика из набора многослойных обмоток.

Явление резонанса работает при этом как в контуре передающей панели зарядного устройства, так и в принимающем контуре зарядного модуля, установленном на заряжаемом устройстве, дабы эффективность передачи и приема энергии получилась максимальной. Технология данной конфигурации универсальна, и может использоваться для беспроводной зарядки различных гаджетов, оснащенных соответствующими резонансными приемниками.

1571302842 21

Техника такого плана принята в качестве части стандарта беспроводной зарядки Qi. Этот стандарт предусматривает два варианта передачи энергии: низкой мощности — от 0 до 5 Ватт и средней мощности — до 10 Ватт. Стандарт разработан после 2008 года Консорциумом беспроводной электромагнитной энергии (Wireless Power Consortium, WPC) для индукционной передачи энергии на расстояние до 4 см.

Аппаратура с поддержкой Qi включает в себя передатчик с плоской катушкой (она расположена за пластиной), подключаемый к стационарному источнику энергии, и совместимый приёмник, который установлен внутри заряжаемого устройства (также в форме плоской катушки). П ри использовании зарядника, подключаемое устройство размещают на пластине передатчика. При этом действует принцип электромагнитной индукции между этими двумя плоскими катушками, как в трансформаторе.

1571302284 4

Qi используется сегодня в некоторых устройствах: Apple, Asus, HTC, Huawei, LG Electronics, Motorola Mobility, Nokia, Samsung, Xiaomi, Sony, Yota Devices. Цель консорциума — создание единого стандарта для технологии индукционной зарядки, чтобы сделать беспроводные зарядные устройства привычным атрибутом публичных мест, таких как кафе, аэропорты, спортивные арены и т. д.

Источник

3 способа передачи энергии без проводов — от Теслы до наших дней.

4 3Когда компания Apple представила свое первое беспроводное зарядное устройство для сотовых телефонов и гаджетов, многие посчитали это революцией и огромным скачком вперед в беспроводных способах передачи энергии.

Но были ли они первопроходцами или еще до них, кому-то удавалось проделать нечто похожее, правда без должного маркетинга и пиара? Оказывается были, притом очень давно и изобретателей таких было множество.

Сейчас такой фокус может повторить любой школьник, выйдя в чистое поле и встав с лампой дневного света под линию высокого напряжения от 220кв и выше.111 aeroz

Чуть попозже, Тесла уже сумел зажечь таким же беспроводным способом фосфорную лампочку накаливания.50 3

В России в 1895г А.Попов показал в работе первый в мире радиоприемник. А ведь по большому счету это тоже является беспроводной передачей энергии.

Самый главный вопрос и одновременно проблема всей технологии беспроводных зарядок и подобных методов заключается в двух моментах:

Для начала давайте разберемся, какую мощность имеют приборы и бытовая техника нас окружающие. Например для телефона, смартчасов или планшета требуется максимум 10-12Вт.48 3

Поэтому очень важно не экономить с количеством розеток на кухне.111 RozKuhna

Так какие же методы и способы для передачи эл.энергии без применения кабелей или любых других проводников, придумало человечество за все эти годы. И самое главное, почему они до сих пор не внедрены столь активно в нашу жизнь, как того хотелось бы.

Взять ту же самую кухонную технику. Давайте разбираться подробнее.

Здесь принцип очень простой. Берутся 2 катушки и размещаются недалеко друг от друга. На одну из них подается питание. Другая играет роль приемника.29 3

Когда в источнике питания регулируется или изменяется сила тока, на второй катушке магнитный поток автоматически также изменяется. Как гласят законы физики, при этом будет возникать ЭДС и она будет напрямую зависеть от скорости изменения этого потока.

Казалось бы все просто. Но недостатки портят всю радужную картинку. Минусов три:

Данным способом вы не передадите большие объемы и не сможете подключить мощные приборы. А попытаетесь это сделать, то просто поплавите все обмотки.57 1

Даже не задумывайтесь здесь о передаче электричества на десятки или сотни метров. Такой способ имеет ограниченное действие.

Чтобы физически понять, насколько все плохо, возьмите два магнита и прикиньте, как далеко их нужно развести, чтобы они перестали притягиваться или отталкиваться друг от друга. Вот примерно такая же эффективность и у катушек.

2enwo1

Можно конечно исхитриться и добиться того, чтобы эти два элемента всегда были близко друг от друга. Например электромобиль и специальная подзаряжающая дорога.23 2

Но в какие суммы выльется строительство таких магистралей.

Тот же Н.Тесла указал на это еще в 1899г. Позже он перешел на эксперименты с атмосферным электричеством, рассчитывая в нем найти разгадку и решение проблемы.2 2

Однако какими бы не казались бесполезными все эти штуки, с их помощью до сих пор можно устраивать красивые светомузыкальные представления.

Или подзаряжать технику гораздо большую чем телефоны. Например электрические велосипеды.22 4

Но как же передать больше энергии на большее расстояние? Задумайтесь, в каких фильмах подобную технологию мы видим очень часто.

Безусловно, с их помощью можно передать большое количество эл.энергии на очень приличные расстояния. Но опять все портит маленькая проблемка.

К нашему счастью, но несчастью для лазера, на Земле есть атмосфера. А она как раз таки хорошо глушит и кушает большую часть всей энергии лазерного излучения. Поэтому с данной технологией нужно идти в космос.

46 4
45 3

Но все равно, даже с КПД в десять процентов, результат посчитали успешным.

Напомним, что у простой лампочки полезной энергии, которая идет непосредственно на свет, и того меньше. Поэтому из них и выгодно изготавливать инфракрасные обогреватели. 111 Infra

Читайте также:  Имитация валуна своими руками видео

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.63 3

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.36 3

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат. Зайдите на кухню и обратите внимание на свою микроволновку.65 1

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

111 USAВ США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.38 2

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.39 2

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.111 zaryad

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.41 2

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.66 1

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях. 111 opressbez

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.55 2

Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.

Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.32 2

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.34 3

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.20 2

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.27 4

Этакая «звезда смерти» в наших земных реалиях.25 3

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.10 1

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Источник

Делаю сам
Adblock
detector