Инверторные блоки питания своими руками

Сварочный инвертор своими руками: схемы и инструкция по сборке

Изготовить сварочный инвертор своими руками, даже не обладая глубокими знаниями в электронике и электротехнике, вполне возможно, главное – строго придерживаться схемы и постараться хорошо разобраться в том, по какому принципу работает такое устройство. Если сделать инвертор, технические характеристики и КПД которого будут мало отличаться от аналогичных параметров серийных моделей, можно сэкономить приличную сумму.

samod svar invertor 629

Самодельный сварочный инвертор

Не следует думать, что самодельный аппарат не даст вам возможности эффективно проводить сварочные работы. Такое устройство, даже собранное по простой схеме, позволит вам выполнять сварку электродами диаметром 3–5 мм и на длине дуги, равной 10 мм.

Характеристики самодельного инвертора и материалы для его сборки

Собрав сварочный инвертор своими руками по достаточно простой электрической схеме, вы получите эффективное устройство, обладающее следующими техническими характеристиками:

Схема сварочного аппарата инверторного типа с такими характеристиками включает следующие элементы:

Прежде чем начать собирать самодельный инвертор, надо подготовить рабочие инструменты и элементы для создания электронных схем. Так, вам понадобятся:

Для домашнего использования чаще всего собирают инверторы, работающие от стандартной электрической сети с напряжением 220 В. Однако при необходимости можно сделать устройство, которое будет работать от трехфазной электрической сети с напряжением 380 В. Такие инверторы имеют свои преимущества, наиболее важным из которых является более высокий КПД, по сравнению с однофазными аппаратами.

Блок питания

Одним из важнейших элементов блока питания сварочного инвертора является трансформатор, который мотается на феррите Ш7х7 или 8х8. Это устройство, обеспечивающее подачу стабильного напряжения, формируется из 4 обмоток:

Чтобы минимизировать негативное влияние перепадов напряжения, регулярно возникающих в электрической сети, намотку обмоток трансформатора следует выполнять по всей ширине каркаса.

namotka transa 634

Процесс намотки силового трансформатора

После выполнения первичной обмотки и изоляции ее поверхности при помощи стеклоткани, на нее наматывают слой экранирующего провода, витки которого должны ее полностью перекрывать. Витки экранирующего провода (он должен иметь такой же диаметр, как и провод первичной обмотки) выполняются в том же направлении. Такое правило актуально и для всех остальных обмоток, формируемых на каркасе трансформатора. Поверхности всех обмоток, наматываемых на каркас трансформатора, также изолируются друг от друга при помощи стеклоткани или обычного малярного скотча.

Чтобы величина напряжения, поступающего от блока питания на реле, находилась в пределах 20–25 В, необходимо подобрать резисторы для электронной схемы. Основной функцией блока питания сварочного инвертора является преобразование переменного тока в постоянный. Для этих целей в блоке питания используются диоды, собранные по схеме «косого моста».

blok pit shema 639

Схема блока питания инвертора (нажмите для увеличения)

В процессе работы диоды такого моста сильно нагреваются, поэтому их обязательно надо монтировать на радиаторах, в качестве которых можно использовать охлаждающие элементы от старых компьютеров. Для монтажа диодного моста необходимо использовать два радиатора: верхняя часть моста через слюдяную прокладку крепится к одному радиатору, нижняя через слой термопасты – ко второму.

Выводы диодов, из которых сформирован мост, должны быть направлены в ту же сторону, что и выводы транзисторов, при помощи которых постоянный ток будет преобразовываться в высокочастотный переменный. Провода, соединяющие эти выводы, должны быть не длиннее 15 см. Между блоком питания и инверторным блоком, основу которого и составляют транзисторы, располагается лист металла, прикрепляемый к корпусу аппарата при помощи сварки.

didnyj most 7456

Закрепление диодов на радиаторе

Силовой блок

Основой силового блока сварочного инвертора является трансформатор, за счет которого снижается величина напряжения высокочастотного тока, а его сила – увеличивается. Для того чтобы сделать трансформатор для такого блока, необходимо подобрать два сердечника Ш20х208 2000 нм. Для обеспечения зазора между ними можно использовать газетную бумагу.

Обмотки такого трансформатора выполняются не из провода, а из медной полосы толщиной 0,25 мм и шириной 40 мм.

Каждый ее слой для обеспечения термоизоляции обматывается лентой от кассового аппарата, которая демонстрирует хорошую износоустойчивость. Вторичная обмотка трансформатора формируется из трех слоев медных полос, которые изолируются между собой при помощи фторопластовой ленты. Характеристики обмоток трансформатора должны соответствовать следующим параметрам: 12 витков х 4 витка, 10 кв. мм х 30 кв. мм.

Многие пытаются сделать обмотки понижающего трансформатора из толстого медного провода, но это неверное решение. Такой трансформатор работает на токах высокой частоты, которые вытесняются на поверхность проводника, не нагревая его внутреннюю часть. Именно поэтому для формирования обмоток оптимальным вариантом является проводник с большой площадью поверхности, то есть широкая медная полоса.

vyhod drossel 764

Самодельный выходной дроссель инвертора

В качестве термоизоляционного материала можно использовать и обычную бумагу, но она менее износоустойчива, чем лента от кассового аппарата. От повышенной температуры такая лента потемнеет, но ее износоустойчивость от этого не пострадает.

Трансформатор силового блока в процессе своей работы будет сильно нагреваться, поэтому для его принудительного охлаждения необходимо использовать кулер, в качестве которого может быть применено устройство, ранее использовавшееся в системном блоке компьютера.

Инверторный блок

Даже простой сварочный инвертор должен выполнять свою основную функцию – преобразовывать постоянный ток, сформированный выпрямителем такого аппарата, в переменный ток высокой частоты. Для решения этой задачи применяются силовые транзисторы, открывающиеся и закрывающиеся с высокой частотой.

sil blok 564

Принципиальная схема инверторного блока (нажмите для увеличения)

Инверторный блок аппарата, отвечающий за преобразование постоянного тока в высокочастотный переменный, лучше собирать на основе не одного мощного транзистора, а нескольких менее мощных. Такое конструктивное решение позволит стабилизировать частоту тока, а также минимизировать шумовые эффекты при выполнении сварочных работ.

В электронной схеме сварочного инвертора также присутствуют конденсаторы, соединенные последовательно. Они необходимы для решения двух основных задач:

plata bloka 723

Собранная электронная часть инвертора

Система охлаждения

Силовые элементы схемы самодельного сварочного инвертора сильно нагреваются в процессе работы, что может привести к их выходу из строя. Чтобы этого не произошло, кроме радиаторов, на которых монтируют наиболее нагревающиеся блоки, необходимо использовать вентиляторы, отвечающие за охлаждение.

Читайте также:  Идеи для досуга своими руками

Если у вас имеется в наличии мощный вентилятор, можно обойтись и им одним, направив поток воздуха от него на понижающий силовой трансформатор. Если же вы используете маломощные вентиляторы от старых компьютеров, их потребуется порядка шести штук. Одновременно три таких вентилятора следует установить рядом с силовым трансформатором, направив поток воздуха от них на него.

ventiljator 5429

Мощный вентилятор обеспечит хорошее охлаждение элементов устройства

Для предотвращения перегрева самодельного сварочного инвертора следует также использовать термодатчик, установив его на самый нагревающийся радиатор. Такой датчик в случае достижения радиатором критической температуры отключит поступление электрического тока на него.
Чтобы система вентиляции инвертора работала эффективно, в его корпусе должны присутствовать правильно выполненные заборщики воздуха. Решетки таких заборщиков, через которые внутрь устройства будут поступать потоки воздуха, не должны ничем перекрываться.

Сборка инвертора своими руками

Для самодельного инверторного устройства необходимо подобрать надежный корпус или сделать его самостоятельно, используя для этого листовой металл толщиной не менее 4 мм. В качестве основания, на котором будет смонтирован трансформатор сварочного инвертора, можно использовать лист гетинакса толщиной не менее 0,5 см. Сам трансформатор крепится на таком основании при помощи скоб, которые можно изготовить своими руками из медной проволоки диаметром 3 мм.

korpus dlja inver 6345 1

Раздвижной корпус заводского изготовления

Для создания электронных плат устройства можно использовать фольгированный текстолит толщиной 0,5–1 мм. При монтаже магнитопроводов, которые в процессе работы будут нагреваться, надо предусматривать зазоры между ними, необходимые для свободной циркуляции воздуха.

Для автоматического управления работой сварочного инвертора вам потребуется приобрести и установить в него ШИМ-контроллер, который будет отвечать за стабилизацию силы сварочного тока и величины напряжения. Чтобы вам было удобно работать с вашим самодельным аппаратом, в лицевой части его корпуса необходимо смонтировать органы управления. К таким органам относятся тумблер включения устройства, ручка переменного резистора, при помощи которой регулируется сварочный ток, а также зажимы для кабелей и сигнальные светодиоды.

peredn panel 748

Пример компоновки передней панели инвертора

Диагностика самодельного инвертора и его подготовка к работе

Сделать инверторный сварочный аппарат – это половина дела. Не менее важной задачей является его подготовка к работе, в процессе которой проверяется корректность функционирования всех элементов, а также их настройка.

Первое, что требуется сделать при проверке самодельного сварочного инвертора, – это подать напряжение 15 В на ШИМ-контроллер и один из охлаждающих вентиляторов. Это позволит одновременно проверить работоспособность контроллера и избежать его перегрева в процессе выполнения такой проверки.

nastrojka invertora 632

Проверка выходного напряжения тестером

Когда реле электронной схемы сработают, на плате ШИМ должны сформироваться прямоугольные импульсы, поступающие к оптронам. Это можно проверить, используя осциллограф. Правильность сборки диодного моста устройства также необходимо проверить, для этого на него подают напряжение 15 В (сила тока при этом не должна превышать 100 мА).

Фазы трансформатора при сборке устройства могли быть неправильно подключены, что может привести к некорректной работе инвертора и возникновению сильных шумов. Чтобы этого не произошло, правильность подключения фаз необходимо проверить, для этого используется двухлучевой осциллограф. Один луч прибора подключается к первичной обмотке, второй – ко вторичной. Фазы импульсов, если обмотки подключены правильно, должны быть одинаковыми.

nastrojka invertor 7234

Использование осциллографа для диагностики инвертора

Правильность изготовления и подключения трансформатора проверяется при помощи осциллографа и подключения к диодному мосту электрических приборов с различным сопротивлением. Ориентируясь на шумы трансформатора и показания осциллографа, делают вывод о том, что необходимо доработать в электронной схеме самодельного инверторного аппарата.

Чтобы проверить, сколько можно непрерывно работать на самодельном инверторе, необходимо начать его тестировать с 10 секунд. Если при работе такой продолжительности радиаторы устройства не нагрелись, можно увеличить период до 20 секунд. Если и такой временной промежуток не сказался негативно на состоянии инвертора, можно увеличить продолжительность работы сварочного аппарата до 1 минуты.

Обслуживание самодельного сварочного инвертора

Чтобы инверторный аппарат служил длительное время, его необходимо правильно обслуживать.

В том случае, если ваш инвертор перестал работать, необходимо открыть его крышку и продуть внутренности пылесосом. Те места, где осталась пыль, можно тщательно почистить при помощи кисточки и сухой тряпки.

Первое, что необходимо сделать, проводя диагностику сварочного инвертора, – это проверить поступление напряжения на его вход. Если напряжение не поступает, следует продиагностировать работоспособность блока питания. Проблема в этой ситуации также может заключаться в том, что сгорели предохранители сварочного аппарата. Еще одним слабым звеном инвертора является температурный датчик, который в случае поломки подлежит не ремонту, а замене.

Bok i datchik

Часто выходящий из строя термодатчик, находящийся обычно на диодном блоке или дросселе

При выполнении диагностики необходимо обращать внимание на качество соединений электронных компонентов аппарата. Определить некачественно выполненные соединения можно визуально или при помощи тестера. Если такие соединения выявлены, их необходимо исправить, чтобы не столкнуться в дальнейшем с перегревом и выходом из строя сварочного инвертора.

Только в том случае, если вы уделяете должное внимание вопросам обслуживания инверторного устройства, можно рассчитывать на то, что оно прослужит вам долгое время и даст возможность выполнять сварочные работы максимально эффективно и качественно.

Источник

Инверторный блок питания для завода автомобиля

Стоит без дела у меня машина, ездить не приходится, но по совету автолюбителей нужно ее заводить раз в месяц. Аккумулятор имеет ограниченный срок службы 4 года, да и стоит около 100$, вот и родилась у меня идея после сборки нескольких инверторных сварочных аппаратов сделать пускач для двигателя, ценой деталей примерно как аккумулятор 45 ампер час.

Этот пускач можно применять как с аккумулятором, так и без него, а с аккумулятором ему будет даже легче заводить даже более массивные двигатели. Я заводил без аккумулятора двигатель 88 лошадей.
Напряжение 11.2 вольта для блока питания я выбрал, потому что стартеры рассчитаны с учетом просадки аккумулятора как раз 10…11 Вольт.

Этот БП имеет стабилизацию по напряжению и защиту от замыкания ограничивающую максимальный ток 224 ампера.

4 113 1

4 113 2s

Работа основана по принципу полного открытия и полного закрытия мощных составных транзисторов, собранных по технологии IGBT, это дает минимум электрических потерь на ключах IGBT.

Трансформатор собран на ферритовом сердечнике, благодаря которому можно строить на таких высоких тактовых частотах (56 кГц) без потерь на вихревые токи, которые бывают в металлических сердечниках. Мощные и быстрые IGBT транзисторы также дают такую возможность.

Вы спросите, а зачем такие высокие частоты? Дело в том, что чем выше, частота тем меньше нужно витков обмотки мотать на трансформатор. А если это так, то обмотку можно делать из толстого провода, что дает маленькие потери на трансформаторе с высоким КПД 95%.

Читайте также:  Деревянный напольный светильник своими руками

Трансформатор получается легкий и маленький, а широтное импульсное управление (ШИМ) дает меньшие потери в сравнении с аналоговой стабилизацией напряжения, где мощность рассевается на мощных транзисторах.

Некоторые из вас заметят, что трансформатор подключается к источнику питания во время тактов сразу двумя ключами, один к плюсу другой к минусу, а не одним ключом как бывает в схеме построенной по принципу ФлиБак.

Дело в том, что схема ФлиБак имеет большие потери на выброс индуктивной обмотки который рассевается на резисторе, эта мощность составляет 10..15% от полной мощности источника, что не годится для построения мощных источников в несколько киловатт.

В этой схеме этот недочет значительно устранен, так как выброс уходит через диоды VD18 VD19 обратно в питание моста, что повышает еще КПД.

Но вы скажите, а как же потери на дополнительном ключе? А я вам скажу, что они составляют не более 40 Ватт, Фли Бак имеет эти потери на рассевом резисторе до 300…400 Ватт.

IGBT – IRG4PC50W быстро открывается, а вот со скоростью закрытия у него хуже, что ведет в момент закрытия к импульсным нагреву кристалла транзистора мощностью 1 кВт, хотя эта мощность и длиться не долго, но она большая.

Для того чтобы снизить эту мгновенную мощность, между коллектором и эмиттером IGBT подключена цепочка из С16 R24 VD31, тоже самое и с верхним IGBT, которая снижает мощность выделяемую на кристалле в момент закрытия IGBT. Но повышает мгновенную мощность в момент открытия, но не так сильно, потому открытие происходит очень быстро. В момент открытия IGBT C16 разряжается через резистор R24, а в момент закрытия заряжается через быстрый диод VD31, затягивая фронт подъема напряжения, пока закрывается IGBT снижая выделяемую мощность на ключе.

Еще эта цепочка хорошо борется с резонирующими выбросами трансформатора, не давая ключу приближаться к пробойному напряжению выше 600 вольт.

IGBT представляет из себя составной транзистор из полевого и биполярного транзистора PNP. Полевой транзистор управляет биполярным. Для его управления нужны прямоугольные импульсы амплитудой не меньше 12 Вольт и не более 18 Вольт с запасом.

Для этой цели я применил специальные оптроны HCPL3120 или 3180 с возможностью рабочей импульсной нагрузки 2 ампера по паспорту 2.5 ампера, но по некоторым причинам рекомендуется не превышать 2 ампера.

Когда напряжение на светодиоде оптрона появляется вход 2 и 1,3,4, то на выходе формируется мощный импульс тока амплитудой 15.8 вольта ограниченный резисторами R55 R48.

А когда напряжение на светодиоде пропадает, идет спад амплитуды который открывает транзистор Т2 и Т4 и создавая более большой ток, на этот раз одном резисторе R48 и R58 быстро разрежая емкость конденсатора IGBT ключа.

Мост с драйверами на оптронах собирается единым блоком на радиаторе от компьютера Pentium 4, который имеет плоское основание, на котором удобно крепить через теплопроводящую пасту без прокладок IGBT. Предварительно нужно радиатор распилить на две части, чтобы верхний ключ и нижний не имели электрического контакта.
Диоды нужно крепить через слюдяную прокладку к тем же радиаторам, соединять все силовые соединения рекомендуется коротким навесным монтажом.
На шину питания там же нужно припаять 8 штук пленочных конденсаторов по 150 нФ 630вольт.

Выходная обмотка силового трансформатора и дроссель

Выходное напряжение вторички без нагрузки достигает 50 вольт, которое выпрямляется диодами VD19 VD20 и поступает на дроссель, на котором происходит сглаживание и деление напряжения пополам, под определенной нагрузкой.

В цикле насыщения дросселя, когда IGBT открыты, наступает фаза насыщения дросселя L3, а когда IGBT закрылись, наступает фаза разряда дросселя через замыкающий диод VD22 VD21, тем самым выпрямляя ток в помощь конденсатору на больших токах.

Широтноимпульсная модуляция (стабилизация и ограничение тока)

Это устройство мозг блока питания UC2845, который создает рабочий такт с изменяемой шириной импульса, в зависимости от напряжения на входах 1 и 2 и тока на входе 3.

Если напряжение на входе 2 падает на несколько милливольт, ширина становиться шире, если напряжение превышает 2.5 вольта, ширина заужается.

Резистор R2 и R1 отвечают за стабильность блока питания зависимости от нагрузки, если напряжение сильно проседает под большими токами выхода, то нужно увеличить сопротивление резистора R1.

Бывает в процессе настройки блок начинает подзуживать, тогда нужно поманипулировать резистором R1 и емкостями конденсаторов С1 и С2. Если это не помогает, то можно попробовать уменьшить количество витков дросселя L3.

Громкого звона трансформатора не должно быть, так как это может привести к выгоранию IGBT, должно быть не громче комара.

Если это все не помогло, то нужно добавить несколько конденсаторов по 1мкф на 3 канал блока питания.

4 113 3

Плата силовых конденсаторов 1320 мкФ

Во время включения блока питания в сеть происходит большой бросок тока, который выводит из строя диодную сборку VD8 во время зарядки этих емкостей.

Чтобы этого не было, нужен резистор ограничивающий ток включения R11, а когда эти конденсаторы зарядятся, таймер на полевом транзисторе сомкнет контакты и зашунтирует реле, давая рабочему току поступать на мост с трансформатором.

Таймер на VT1 также размыкает контакты реле К2, разрешая работу ШИМу, до этого работа запрещена, чтобы конденсаторы могли нормально зарядиться не просаживая резистор R11.

4 113 4

Настройка

Запитать силовой мост напряжением 15 вольт, проследить правильную работу моста проверка на ляпы и неточность пайки. Потом запитать мост напряжением сети, только в разрыв между +310 вольт, где конденсаторы 1320 мкФ и конденсаторы 150 нФ 8штук поставить лампочку на 150…200 Ватт.

Подключить осциллограф на коллектор эмиттер нижнего силового ключа, посмотреть на выбросы, чтобы они были в норме, обычно не выше 330 вольт выставляя тактовую частоту ШИМа, все ниже и ниже добиться появления маленького загиба импульса свидетельствующего о перенасыщении трансформатора, измерить эту тактовую частоту поделить ее на 2 и результат прибавить к этой частоте на которой произошел загиб и будет рабочей тактовой частотой вашего трансформатора которую нужно выставить. То есть рабочая частота должна быть на половину частоты перенасыщения сердечника выше.

Проверить фразировку обмоток силового трансформатора. Подключить осциллограф на нижний ключ и увеличивая нагрузку наблюдать, чтобы не было звона и всплесков напряжения выше 350…400 вольт дойти до максимального тока, который позволит балласт чайник или другое сопротивление.

Читайте также:  Зимний самотряс своими руками

Проследить температуру радиатора моста, чтобы две половинки радиатора нагревались одинаково, что свидетельствует о качественных ключах моста.

Подключить обратную связь по напряжению, поставить конденсатор С23, измерить напряжение, чтобы оно было в пределе нормы 11..11.2 Вольта.

Нагрузить источник не большой нагрузкой 40 Ватт, добиться тихой работы изменяя количество витков на дросселе L3, если это не помогает, нужно увеличить емкость конденсаторов С1 С2.

Если это тоже не помогло, нужно расположить плату ШИМ подальше от помех силового трансформатора и дросселя и блока питания.

Сделать из алюминиевого провода балластный резистор сечением 4кв мм длиной 10…15 метров, положить его в воду, также добиться тихой работы без генережа.

Убрать чайник, соединить напрямую и начиная от малого тока слушая и наблюдая за осциллографом нижнего ключа дойти до максимального тока баластика с тихой работой схемы.

Если следовать этим рекомендациям у вас все получиться.

Скачать печатные платы в формате LAY вы можете ниже

Источник

Как работает простой и мощный импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

ponizhayushhij transformator oso 025Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

strukturnaya shema impulsnogo bloka pitaniyaРисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

strukturnaya shema shim kontroleraСтруктурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

principialnaya shema impulsnogo bpПринципиальная схема импульсного БП

Обозначения:

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Источник

Делаю сам
Adblock
detector